Limiting nutrients of phytoplankton community in Hiroshima Bay, Japan

1996 ◽  
Vol 30 (6) ◽  
pp. 1490-1494 ◽  
Author(s):  
Young Sik Lee ◽  
Tohru Seiki ◽  
Tetsuo Mukai ◽  
Kazuto Takimoto ◽  
Mitsumasa Okada
2021 ◽  
Author(s):  
Benjamin C Calfee ◽  
Liz D Glasgo ◽  
Erik R Zinser

The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients, and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and co-culture when nutrients were replete. However, in nitrogen-limited medium Prochlorococcus outgrew Synechococcus, but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen, but only if stimulated by exudate released by Prochlorococcus, or if a proxy organic carbon source was provided. Analysis of a nitrate reductase mutant Alteromonas suggested that Alteromonas outcompetes Synechococcus for nitrate, during which co-cultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus in the nutrient-limited regions of the ocean.


2018 ◽  
Vol 81 (2) ◽  
pp. 109-124 ◽  
Author(s):  
JL Pinckney ◽  
C Tomas ◽  
DI Greenfield ◽  
K Reale-Munroe ◽  
B Castillo ◽  
...  

2010 ◽  
Vol 30 (4) ◽  
pp. 453-459
Author(s):  
Liang CHEN ◽  
Xiu-Feng ZHANG ◽  
Zheng-Wen LIU

2020 ◽  
Vol 16 (6) ◽  
pp. 928-933
Author(s):  
Jujjavarapu S. Eswari

Objective: Biosurfactants are the surface active agents which are used for the reduction of surface and interfacial tensions of liquids. Rhamnolipids are the surfactants produced by Pseudomonas aeruginosa. It requires minimum nutrition for its growth as it can also grow in distilled water. The rhamnolipids produced by Pseudomonas aeruginosa are extra-cellular glycolipids consisting of L-rhamnose and 3-hydroxyalkanoic acid. Methods: The fed-batch method for the rhamnolipid production is considered in this study to know the influence of the carbon, nitrogen, phosphorous substrates as growth-limiting nutrients. Pulse feeding is employed for limiting nutrient addition at particular time interval to obtain maximum rhamnolipid formation from Pseudomonas aeruginosa compared with the batch process. Results: Out of 3 fed batch strategies constant glucose fed batch strategy shows best and gave maximum rhamnolipid concentration of 0.134 g/l.


1987 ◽  
Vol 44 (12) ◽  
pp. 2155-2163 ◽  
Author(s):  
I. M. Gray

Differences between nearshore and offshore phytoplankton biomass and composition were evident in Lake Ontario in 1982. Phytoplankton biomass was characterized by multiple peaks which ranged over three orders of magnitude. Perhaps as a consequence of the three times higher current velocities at the northshore station, phytoplankton biomass ranged from 0.09 to 9.00 g∙m−3 compared with 0.10 to 2.40 g∙m−3 for the midlake station. Bacillariophyceae was the dominant group at the northshore station until September when Cyanophyta contributed most to the biomass (83%). Although Bacillariophyceae was the principal component of the spring phytoplankton community at the midlake station, phytoflagellates (49%) and Chlorophyceae (25%) were responsible for summer biomass, with the Chlorophyceae expanding to 80% in the fall. The seasonal pattern of epilimnetic chlorophyll a correlated with temperature. While chlorophyll a concentrations were similar to values from 1970 and 1972, algal biomass had declined and a number of eutrophic species (Melosira binderana, Stephanodiscus tenuis, S. hantzschii var. pusilla, and S. alpinus) previously found were absent in 1982.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Alexia D. Saint-Macary ◽  
Neill Barr ◽  
Evelyn Armstrong ◽  
Karl Safi ◽  
Andrew Marriner ◽  
...  

The cycling of the trace gas dimethyl sulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) may be affected by future ocean acidification and warming. DMSP and DMS concentrations were monitored over 20-days in four mesocosm experiments in which the temperature and pH of coastal water were manipulated to projected values for the year 2100 and 2150. This had no effect on DMSP in the two-initial nutrient-depleted experiments; however, in the two nutrient-amended experiments, warmer temperature combined with lower pH had a more significant effect on DMSP & DMS concentrations than lower pH alone. Overall, this indicates that future warming may have greater influence on DMS production than ocean acidification. The observed reduction in DMSP at warmer temperatures was associated with changes in phytoplankton community and in particular with small flagellate biomass. A small decrease in DMS concentration was measured in the treatments relative to other studies, from −2% in the nutrient-amended low pH treatment to −16% in the year 2150 pH and temperature conditions. Temporal variation was also observed with DMS concentration increasing earlier in the higher temperature treatment. Nutrient availability and community composition should be considered in models of future DMS.


Author(s):  
Yekaterina Yezhova ◽  
David Capelle ◽  
Michael Stainton ◽  
Tim Papakyriakou

Sign in / Sign up

Export Citation Format

Share Document