Finite element computer program for incremental analysis of large three-dimensional frictional contact problems of linear elasticity

1993 ◽  
Vol 46 (4) ◽  
pp. 679-687 ◽  
Author(s):  
G. Zboiński
1999 ◽  
Vol 66 (2) ◽  
pp. 460-467 ◽  
Author(s):  
S. H. Ju ◽  
R. E. Rowlands

A three-dimensional contact element based on the penalty function method has been developed for contact frictional problems with sticking, sliding, and separation modes infinite element analysis. A major advantage of this contact element is that its stiffness matrix is symmetric, even for frictional contact problems which have extensive sliding. As with other conventional finite elements, such as beam and continuum elements, this new contact element can be added to an existing finite element program without having to modify the main finite element analysis program. One is therefore able to easily implement the element into existing nonlinear finite element analysis codes for static, dynamic, and inelastic analyses. This element, which contains one contact node and four target nodes, can be used to analyze node-to-surface contact problems including those where the contact node slides along one or several target surfaces.


1977 ◽  
Vol 191 (1) ◽  
pp. 187-193 ◽  
Author(s):  
J. C. Miles ◽  
G. A. Wardill

A three dimensional structural collapse analysis computer program is described, and illustrated by reference to a safety vehicle structure analysed and designed using the program. The particular problems of large displacements and material non-linearity are accounted for, and a method of estimating the permanent set which results after impact is described. Based on an incremental formulation of the conventional finite-element method, the computer program is capable of tracing the complete load deflection characteristics of a structure up to and beyond the point of collapse.


Author(s):  
W. Habchi ◽  
J. Issa

This paper presents a reduced full-system finite element solution of isothermal elastohydrodynamic (EHD) line contact problems. The proposed model is based on a full-system finite element resolution of the EHL equations: Reynolds, linear elasticity and load balance. A reduced model is proposed for the linear elasticity problem. For this, three different techniques are tested: the classical “Modal reduction” and “Ritz-vector” methods and a novel “EHL-basis” method. The reduction order in the first two appears to be insufficient and a large number of degrees of freedom is required in order to attain an acceptable solution. On the other hand, the “EHL-basis” method shows up to be much more efficient, requiring only a few degrees of freedom to compose the elastic deformation of the solid components. In addition, a comparison with the full model shows an order of magnitude cpu time gain with errors of the order of only 1‰ for the central and minimum film thicknesses.


1987 ◽  
Vol 12 (4) ◽  
pp. 239-250 ◽  
Author(s):  
R. A. Tatara

A general thermal model to calculate the thermal resistance of a power module having rectangular die and layers has been constructed. The model incorporates a finite element computer program to solve for three-dimensional heat conduction. Effects of voids in the solder regions are included. A sample case is analyzed, and a comparison is made to a recent study.


Sign in / Sign up

Export Citation Format

Share Document