Calendar life span versus budding lifespan of Saccharomyces cerevisiae

1980 ◽  
Vol 12 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Ilse Müller ◽  
Monika Zimmermann ◽  
Doris Becker ◽  
Marlies Flömer
Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1661-1672 ◽  
Author(s):  
Matt Kaeberlein ◽  
Alex A Andalis ◽  
Gregory B Liszt ◽  
Gerald R Fink ◽  
Leonard Guarente

AbstractThe SSD1 gene of Saccharomyces cerevisiae is a polymorphic locus that affects diverse cellular processes including cell integrity, cell cycle progression, and growth at high temperature. We show here that the SSD1-V allele is necessary for cells to achieve extremely long life span. Furthermore, addition of SSD1-V to cells can increase longevity independently of SIR2, although SIR2 is necessary for SSD1-V cells to attain maximal life span. Past studies of yeast aging have been performed in short-lived ssd1-d strain backgrounds. We propose that SSD1-V defines a previously undescribed pathway affecting cellular longevity and suggest that future studies on longevity-promoting genes should be carried out in long-lived SSD1-V strains.


2014 ◽  
Vol 25 (12) ◽  
pp. 1916-1924 ◽  
Author(s):  
David Öling ◽  
Rehan Masoom ◽  
Kristian Kvint

Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes.


1994 ◽  
Vol 127 (6) ◽  
pp. 1985-1993 ◽  
Author(s):  
B K Kennedy ◽  
N R Austriaco ◽  
L Guarente

The yeast Saccharomyces cerevisiae typically divides asymmetrically to give a large mother cell and a smaller daughter cell. As mother cells become old, they enlarge and produce daughter cells that are larger than daughters derived from young mother cells. We found that occasional daughter cells were indistinguishable in size from their mothers, giving rise to a symmetric division. The frequency of symmetric divisions became greater as mother cells aged and reached a maximum occurrence of 30% in mothers undergoing their last cell division. Symmetric divisions occurred similarly in rad9 and ste12 mutants. Strikingly, daughters from old mothers, whether they arose from symmetric divisions or not, displayed reduced life spans relative to daughters from young mothers. Because daughters from old mothers were larger than daughters from young mothers, we investigated whether an increased size per se shortened life span and found that it did not. These findings are consistent with a model for aging that invokes a senescence substance which accumulates in old mother cells and is inherited by their daughters.


2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Subasri Subramaniyan ◽  
Phaniendra Alugoju ◽  
Sudharshan SJ ◽  
Bhavana Veerabhadrappa ◽  
Madhu Dyavaiah

2006 ◽  
Vol 6 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Mark S. Stewart ◽  
Sue Ann Krause ◽  
Josephine McGhie ◽  
Joseph V. Gray

ABSTRACT Pumilio family (PUF) proteins affect specific genes by binding to, and inhibiting the translation or stability of, their transcripts. The PUF domain is required and sufficient for this function. One Saccharomyces cerevisiae PUF protein, Mpt5p (also called Puf5p or Uth4p), promotes stress tolerance and replicative life span (the maximum number of doublings a mother cell can undergo before entering into senescence) by an unknown mechanism thought to partly overlap with, but to be independent of, the cell wall integrity (CWI) pathway. Here, we found that mpt5Δ mutants also display a short chronological life span (the time cells stay alive in saturated cultures in synthetic medium), a defect that is suppressed by activation of CWI signaling. We found that Mpt5p is an upstream activator of the CWI pathway: mpt5Δ mutants display the appropriate phenotypes and genetic interactions, display low basal activity of the pathway, and are defective in activation of the pathway upon thermal stress. A set of mRNAs that specifically bind to Mpt5p was recently reported. One such putative target, LRG1, encodes a GTPase-activating protein for Rho1p that directly links Mpt5p to CWI signaling: Lrg1p inhibits CWI signaling, LRG1 mRNA contains a consensus Mpt5p-binding site in its putative 3′ untranslated region, loss of Lrg1p suppresses the temperature sensitivity and CWI signaling defects of mpt5Δ mutants, and LRG1 mRNA abundance is inhibited by Mpt5p. We conclude that Mpt5p is required for normal replicative and chronological life spans and that the CWI pathway is a key and direct downstream target of this PUF protein.


Science ◽  
2014 ◽  
Vol 344 (6190) ◽  
pp. 1389-1392 ◽  
Author(s):  
S. M. Hill ◽  
X. Hao ◽  
B. Liu ◽  
T. Nystrom

Aging Cell ◽  
2003 ◽  
Vol 2 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Paola Fabrizio ◽  
Valter D. Longo

Sign in / Sign up

Export Citation Format

Share Document