scholarly journals Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span.

1994 ◽  
Vol 127 (6) ◽  
pp. 1985-1993 ◽  
Author(s):  
B K Kennedy ◽  
N R Austriaco ◽  
L Guarente

The yeast Saccharomyces cerevisiae typically divides asymmetrically to give a large mother cell and a smaller daughter cell. As mother cells become old, they enlarge and produce daughter cells that are larger than daughters derived from young mother cells. We found that occasional daughter cells were indistinguishable in size from their mothers, giving rise to a symmetric division. The frequency of symmetric divisions became greater as mother cells aged and reached a maximum occurrence of 30% in mothers undergoing their last cell division. Symmetric divisions occurred similarly in rad9 and ste12 mutants. Strikingly, daughters from old mothers, whether they arose from symmetric divisions or not, displayed reduced life spans relative to daughters from young mothers. Because daughters from old mothers were larger than daughters from young mothers, we investigated whether an increased size per se shortened life span and found that it did not. These findings are consistent with a model for aging that invokes a senescence substance which accumulates in old mother cells and is inherited by their daughters.

1984 ◽  
Vol 4 (11) ◽  
pp. 2529-2531 ◽  
Author(s):  
B J Brewer ◽  
E Chlebowicz-Sledziewska ◽  
W L Fangman

During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.


1999 ◽  
Vol 145 (6) ◽  
pp. 1177-1188 ◽  
Author(s):  
Sylvia L. Sanders ◽  
Martina Gentzsch ◽  
Widmar Tanner ◽  
Ira Herskowitz

Cells of the yeast Saccharomyces cerevisiae choose bud sites in a manner that is dependent upon cell type: a and α cells select axial sites; a/α cells utilize bipolar sites. Mutants specifically defective in axial budding were isolated from an α strain using pseudohyphal growth as an assay. We found that a and α mutants defective in the previously identified PMT4 gene exhibit unipolar, rather than axial budding: mother cells choose axial bud sites, but daughter cells do not. PMT4 encodes a protein mannosyl transferase (pmt) required for O-linked glycosylation of some secretory and cell surface proteins (Immervoll, T., M. Gentzsch, and W. Tanner. 1995. Yeast. 11:1345–1351). We demonstrate that Axl2/Bud10p, which is required for the axial budding pattern, is an O-linked glycoprotein and is incompletely glycosylated, unstable, and mislocalized in cells lacking PMT4. Overexpression of AXL2 can partially restore proper bud-site selection to pmt4 mutants. These data indicate that Axl2/Bud10p is glycosylated by Pmt4p and that O-linked glycosylation increases Axl2/ Bud10p activity in daughter cells, apparently by enhancing its stability and promoting its localization to the plasma membrane.


1995 ◽  
Vol 129 (3) ◽  
pp. 751-765 ◽  
Author(s):  
J Chant ◽  
J R Pringle

Cells of the yeast Saccharomyces cerevisiae select bud sites in either of two distinct spatial patterns, known as axial (expressed by a and alpha cells) and bipolar (expressed by a/alpha cells). Fluorescence, time-lapse, and scanning electron microscopy have been used to obtain more precise descriptions of these patterns. From these descriptions, we conclude that in the axial pattern, the new bud forms directly adjacent to the division site in daughter cells and directly adjacent to the immediately preceding division site (bud site) in mother cells, with little influence from earlier sites. Thus, the division site appears to be marked by a spatial signal(s) that specifies the location of the new bud site and is transient in that it only lasts from one budding event to the next. Consistent with this conclusion, starvation and refeeding of axially budding cells results in the formation of new buds at nonaxial sites. In contrast, in bipolar budding cells, both poles are specified persistently as potential bud sites, as shown by the observations that a pole remains competent for budding even after several generations of nonuse and that the poles continue to be used for budding after starvation and refeeding. It appears that the specification of the two poles as potential bud sites occurs before a daughter cell forms its first bud, as a daughter can form this bud near either pole. However, there is a bias towards use of the pole distal to the division site. The strength of this bias varies from strain to strain, is affected by growth conditions, and diminishes in successive cell cycles. The first bud that forms near the distal pole appears to form at the very tip of the cell, whereas the first bud that forms near the pole proximal to the original division site (as marked by the birth scar) is generally somewhat offset from the tip and adjacent to (or overlapping) the birth scar. Subsequent buds can form near either pole and appear almost always to be adjacent either to the birth scar or to a previous bud site. These observations suggest that the distal tip of the cell and each division site carry persistent signals that can direct the selection of a bud site in any subsequent cell cycle.


Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3129-3137 ◽  
Author(s):  
Chris D. Powell ◽  
David E. Quain ◽  
Katherine A. Smart

Ageing in budding yeast is not determined by chronological lifespan, but by the number of times an individual cell is capable of dividing, termed its replicative capacity. As cells age they are subject to characteristic cell surface changes. Saccharomyces cerevisiae reproduces asexually by budding and as a consequence of this process both mother and daughter cell retain chitinous scar tissue at the point of cytokinesis. Daughter cells exhibit a frail structure known as the birth scar, while mother cells display a more persistent bud scar. The number of bud scars present on the cell surface is directly related to the number of times a cell has divided and thus constitutes a biomarker for replicative cell age. It has been proposed that the birth scar may be subject to stretching caused by expansion of the daughter cell; however, no previous analysis of the effect of cell age on birth or bud scar size has been reported. This paper provides evidence that scar tissue expands with the cell during growth. It is postulated that symmetrically arranged breaks in the bud scar allow these rigid chitinous structures to expand without compromising cellular integrity.


1984 ◽  
Vol 4 (11) ◽  
pp. 2529-2531
Author(s):  
B J Brewer ◽  
E Chlebowicz-Sledziewska ◽  
W L Fangman

During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.


1997 ◽  
Vol 43 (8) ◽  
pp. 774-781 ◽  
Author(s):  
Alena Pichová ◽  
Dagmar Vondráková ◽  
Michael Breitenbach

We investigated the phenotypic consequences in Saccharomyces cerevisiae of a disruption allele (ras2::LEU2) and of a dominant mutant form (RAS2ala18,val19) of RAS2. In addition to the phenotypes described earlier for these mutants, we observed a small increase in the life span for the disruption allele and a drastic decrease of life span for the dominant mutant form, as compared with the isogenic wild type. This was found by analyzing these alleles in two different genetic backgrounds with nearly the same results. Life spans were determined by micromanipulating mother cells and counting generations until no further cell division occurred. A morphological analysis of the terminal phenotypes of very old mother cells was performed showing enlarged or rounded cells and in some cases elongated buds, some of which were difficult to separate from the mother cell. This was observed in wild-type cells, as well as mutant cells. However, the dominant RAS2 mutant (but not the wild-type or ras2::LEU2 mutant cells) after 2 days on complex media displayed phenotypes similar to the terminal phenotype of old mothers. A substantial fraction of the cells were enlarged and generated elongated buds, they lost Calcofluor staining of the bud scars, the cell surface appeared folded, the actin cytoskeleton was aberrant, and the mitotic spindle and the cytoplasmic microtubules were defective in their proper orientation, resulting in aberrant mitoses and empty buds. These phenotypic characteristics of the RAS2ala18,val19 mutation could be causative for the previously observed rapid loss of viability of these cells in stationary phase.Key words: yeast, Saccharomyces cerevisiae, RAS, oncogene, aging, morphology.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Chi-Yung Lai ◽  
Ewa Jaruga ◽  
Corina Borghouts ◽  
S Michal Jazwinski

Abstract The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and daughter ensures that the yeast strain remains immortal. To understand the mechanisms underlying age asymmetry, we have isolated temperature-sensitive mutants that have limited growth capacity. One of these clonal-senescence mutants was in ATP2, the gene encoding the β-subunit of mitochondrial F1, F0-ATPase. A point mutation in this gene caused a valine-to-isoleucine substitution at the ninetieth amino acid of the mature polypeptide. This mutation did not affect the growth rate on a nonfermentable carbon source. Life-span determinations following temperature shift-down showed that the clonal-senescence phenotype results from a loss of age asymmetry at 36°, such that daughters are born old. It was characterized by a loss of mitochondrial membrane potential followed by the lack of proper segregation of active mitochondria to daughter cells. This was associated with a change in mitochondrial morphology and distribution in the mother cell and ultimately resulted in the generation of cells totally lacking mitochondria. The results indicate that segregation of active mitochondria to daughter cells is important for maintenance of age asymmetry and raise the possibility that mitochondrial dysfunction may be a normal cause of aging. The finding that dysfunctional mitochondria accumulated in yeasts as they aged and the propensity for old mother cells to produce daughters depleted of active mitochondria lend support to this notion. We propose, more generally, that age asymmetry depends on partition of active and undamaged cellular components to the progeny and that this “filter” breaks down with age.


2018 ◽  
Vol 217 (2) ◽  
pp. 495-505 ◽  
Author(s):  
Francisco Piña ◽  
Fumi Yagisawa ◽  
Keisuke Obara ◽  
J.D. Gregerson ◽  
Akio Kihara ◽  
...  

Proper inheritance of functional organelles is vital to cell survival. In the budding yeast, Saccharomyces cerevisiae, the endoplasmic reticulum (ER) stress surveillance (ERSU) pathway ensures that daughter cells inherit a functional ER. Here, we show that the ERSU pathway is activated by phytosphingosine (PHS), an early biosynthetic sphingolipid. Multiple lines of evidence support this: (1) Reducing PHS levels with myriocin diminishes the ability of cells to induce ERSU phenotypes. (2) Aureobasidin A treatment, which blocks conversion of early intermediates to downstream complex sphingolipids, induces ERSU. (3) orm1Δorm2Δ cells, which up-regulate PHS, show an ERSU response even in the absence of ER stress. (4) Lipid analyses confirm that PHS levels are indeed elevated in ER-stressed cells. (5) Lastly, the addition of exogenous PHS is sufficient to induce all ERSU phenotypes. We propose that ER stress elevates PHS, which in turn activates the ERSU pathway to ensure future daughter-cell viability.


2020 ◽  
Vol 48 (19) ◽  
pp. 10877-10889 ◽  
Author(s):  
Yaxin Yu ◽  
Robert M Yarrington ◽  
David J Stillman

Abstract The Saccharomyces cerevisiae HO gene is a model regulatory system with complex transcriptional regulation. Budding yeast divide asymmetrically and HO is expressed only in mother cells where a nucleosome eviction cascade along the promoter during the cell cycle enables activation. HO expression in daughter cells is inhibited by high concentration of Ash1 in daughters. To understand how Ash1 represses transcription, we used a myo4 mutation which boosts Ash1 accumulation in both mothers and daughters and show that Ash1 inhibits promoter recruitment of SWI/SNF and Gcn5. We show Ash1 is also required for the efficient nucleosome repopulation that occurs after eviction, and the strongest effects of Ash1 are seen when Ash1 has been degraded and at promoter locations distant from where Ash1 bound. Additionally, we defined a specific nucleosome/nucleosome-depleted region structure that restricts HO activation to one of two paralogous DNA-binding factors. We also show that nucleosome eviction occurs bidirectionally over a large distance. Significantly, eviction of the more distant nucleosomes is dependent upon the FACT histone chaperone, and FACT is recruited to these regions when eviction is beginning. These last observations, along with ChIP experiments involving the SBF factor, suggest a long-distance loop transiently forms at the HO promoter.


Sign in / Sign up

Export Citation Format

Share Document