scholarly journals Approaches to a three-dimensional model of E. coli ribosome

1986 ◽  
Vol 48 (2) ◽  
pp. 67-101 ◽  
Author(s):  
Kozo Nagano ◽  
Michal Harel
2008 ◽  
Vol 52 (8) ◽  
pp. 2909-2914 ◽  
Author(s):  
Stéphanie Matrat ◽  
Alexandra Aubry ◽  
Claudine Mayer ◽  
Vincent Jarlier ◽  
Emmanuelle Cambau

ABSTRACT The replacement of M74 in GyrA, A83 in GyrA, and R447 in GyrB of Mycobacterium tuberculosis gyrase by their Escherichia coli homologs resulted in active enzymes as quinolone susceptible as the E. coli gyrase. This demonstrates that the primary structure of gyrase determines intrinsic quinolone resistance and was supported by a three-dimensional model of N-terminal GyrA.


2013 ◽  
Vol 425 (14) ◽  
pp. 2591-2608 ◽  
Author(s):  
Pamela Bonar ◽  
Hans-Peter Schneider ◽  
Holger M. Becker ◽  
Joachim W. Deitmer ◽  
Joseph R. Casey

2020 ◽  
pp. jbc.RA120.015189
Author(s):  
Isadora A. Oliveira ◽  
Diego Allonso ◽  
Tácio V. A. Fernandes ◽  
Daniela M.S. Lucena ◽  
Gustavo T. Ventura ◽  
...  

Glycoconjugates play a central role in several cellular processes and alteration in their composition is associated with numerous human pathologies. Substrates for cellular glycosylation are synthesized in the hexosamine biosynthetic pathway, which is controlled by the glutamine:fructose-6-phosphate amidotransfera-se (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer; however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in E. coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the expected ordered bi-bi mechanism, and performs the glucosamine-6-phosphate synthesis much more slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerize fructose-6-phosphate into glucose-6-phosphate even in the presence of equimolar amounts of glutamine, which results in unproductive glutamine hydrolysis. Structural analysis of a three-dimensional model of rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in the glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations suggest that this loop is the most flexible portion of the protein, and plays a key role on conformational states of hGFAT2. Thus, our study provides the first comprehensive set of data on the structure, kinetics and mechanics of hGFAT2, which will certainly contribute to further studies on the (patho)physiology of hGFAT2.


2020 ◽  
Author(s):  
Isadora A. Oliveira ◽  
Diego Allonso ◽  
Tácio V. A. Fernandes ◽  
Daniela M. S. Lucena ◽  
Gustavo T. Ventura ◽  
...  

AbstractGlycoconjugates play a central role in several cellular processes and alteration in their composition is associated to human pathologies. The hexosamine biosynthetic pathway is a route through which cells obtain substrates for cellular glycosylation, and is controlled by the glutamine: fructose-6-phosphate amidotransferase (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer, however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in E. coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the ordered bi-bi mechanism, and performs the glucosamine-6-phosphate synthesis much slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerase fructose-6-phosphate into glucose-6-phosphate even in presence of equimolar amounts of glutamine, in an unproductive glutamine hydrolysis. Structural analysis of the generated three-dimensional model rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations show such loop as the most flexible portion of the protein, which interacts with the protein mainly through the interdomain region, and plays a key role on conformational states of hGFAT2. Altogether, our study provides the first comprehensive set of data on the structure, kinetics and mechanics of hGFAT2, which will certainly contribute for further studies focusing on drug development targeting hGFAT2.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document