hexosamine biosynthetic pathway
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 51)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Kira Allmeroth ◽  
Matías D Hartman ◽  
Martin Purrio ◽  
Andrea Mesaros ◽  
Martin Sebastian Denzel

Glucosamine feeding and genetic activation of the hexosamine biosynthetic pathway (HBP) have been linked to improved protein quality control and lifespan extension in various species. Thus, there is considerable interest in the potential health benefits of dietary supplementation with glucosamine or other HBP metabolites in people. The HBP is a sensor for energy availability and its activation has been implicated in tumor progression and diabetes in higher organisms. As the activation of the HBP has been linked to longevity in lower animals, it is imperative to explore the long-term effects of chronic HBP activation in mammals, which has not been examined so far. To address this issue, we activated the HBP in mice both genetically and through metabolite supplementation, and evaluated metabolism, memory, and survival. GlcNAc supplementation in the drinking water had no adverse effect on weight gain in males but increased weight in young female mice. Glucose or insulin tolerance were not affected up to 20 months of age. Of note, we observed improved memory in the Morris water maze in young male mice supplemented with GlcNAc. Survival was not changed by GlcNAc supplementation. To assess the effects of genetic HBP activation we overexpressed the key enzyme GFAT1 as well as a constitutively activated mutant form in all mouse tissues. We detected elevated UDP-GlcNAc levels in mouse brains, but did not find any effects on behavior, memory, or survival. Together, while dietary GlcNAc supplementation did not extend survival in mice, it positively affected memory and is generally well tolerated.


2022 ◽  
pp. 1-13
Author(s):  
Hong Zheng ◽  
Jian Huang ◽  
Ming Zhang ◽  
Hu-Juan Zhao ◽  
Pang Chen ◽  
...  

<b><i>Introduction:</i></b> Diabetes mellitus (DM)-induced testicular damage is characterized by abnormal apoptosis of spermatogenic cells. Here, we clarified the roles and the molecular mechanism of microRNA (miR)-27b-3p in high glucose (HG)-induced spermatogenic cell damage. <b><i>Methods:</i></b> GC-1 spg cells were treated with 30 mmol/L glucose for 24 h. Cell viability was assessed by 2.3 3-(4, 5-dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide (MTT) assay. And, levels of O-linked N-acetylglucosamine (OGT), apoptosis-related proteins, and autophagy-related proteins were evaluated using Western blot. Levels of tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and UDP-N-acetylglucosamine (UDP-GlcNAc) were assessed by enzyme linked immunosorbent (ELISA) assay. Levels of reactive oxygen species (ROS), malonic dialdehyde (MDA) and activity of superoxide dismutase (SOD) in cells were determined using kits. Cell apoptosis was determined using flow cytometry assay. Besides, dual luciferase reporter assay was employed to verify the binding relationship between miR-27b-3p and glutamine-fructose-6-phosphate transaminase 1 (Gfpt1). <b><i>Results:</i></b> miR-27b-3p was markedly downregulated in HG-treated GC-1 spg cells. HG treatment caused decreased cell viability, increased oxidative stress and inflammation, and induced autophagy and apoptosis, which were abolished by miR-27b-3p overexpression. miR-27b-3p suppressed the activation of hexosamine biosynthetic pathway (HBP) signaling in HG-treated spermatogenic cells. miR-27b-3p directly bound to Gfpt1 and negatively regulated its expression. <b><i>Conclusion:</i></b> miR-27b-3p could improve HG-induced spermatogenic cell damage via regulating Gfpt1/HBP signaling, providing a new treatment strategy for the treatment of DM-induced testicular damage.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Peter K Kim ◽  
Christopher J Halbrook ◽  
Samuel A Kerk ◽  
Megan Radyk ◽  
Stephanie Wisner ◽  
...  

Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in human PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not preclude the growth of human tumor xenografts in mice, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. We found that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.


2021 ◽  
Vol 12 ◽  
Author(s):  
Allan R. Brasier ◽  
Dianhua Qiao ◽  
Yingxin Zhao

Disruption of the lower airway epithelial barrier plays a major role in the initiation and progression of chronic lung disease. Here, repetitive environmental insults produced by viral and allergens triggers metabolic adaptations, epithelial-mesenchymal plasticity (EMP) and airway remodeling. Epithelial plasticity disrupts epithelial barrier function, stimulates release of fibroblastic growth factors, and remodels the extracellular matrix (ECM). This review will focus on recent work demonstrating how the hexosamine biosynthetic pathway (HBP) links innate inflammation to airway remodeling. The HBP is a core metabolic pathway of the unfolded protein response (UPR) responsible for protein N-glycosylation, relief of proteotoxic stress and secretion of ECM modifiers. We will overview findings that the IκB kinase (IKK)-NFκB pathway directly activates expression of the SNAI-ZEB1 mesenchymal transcription factor module through regulation of the Bromodomain Containing Protein 4 (BRD4) chromatin modifier. BRD4 mediates transcriptional elongation of SNAI1-ZEB as well as enhancing chromatin accessibility and transcription of fibroblast growth factors, ECM and matrix metalloproteinases (MMPs). In addition, recent exciting findings that IKK cross-talks with the UPR by controlling phosphorylation and nuclear translocation of the autoregulatory XBP1s transcription factor are presented. HBP is required for N glycosylation and secretion of ECM components that play an important signaling role in airway remodeling. This interplay between innate inflammation, metabolic reprogramming and lower airway plasticity expands a population of subepithelial myofibroblasts by secreting fibroblastic growth factors, producing changes in ECM tensile strength, and fibroblast stimulation by MMP binding. Through these actions on myofibroblasts, EMP in lower airway cells produces expansion of the lamina reticularis and promotes airway remodeling. In this manner, metabolic reprogramming by the HBP mediates environmental insult-induced inflammation with remodeling in chronic airway diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Victoria Palin ◽  
Matthew Russell ◽  
Robert Graham ◽  
John D. Aplin ◽  
Melissa Westwood

AbstractWomen with pre-existing diabetes have an increased risk of poor pregnancy outcomes, including disordered fetal growth, caused by changes to placental function. Here we investigate the possibility that the hexosamine biosynthetic pathway, which utilises cellular nutrients to regulate protein function via post-translationally modification with O-linked N-acetylglucosamine (GlcNAc), mediates the placental response to the maternal metabolic milieu. Mass spectrometry analysis revealed that the placental O-GlcNAcome is altered in women with type 1 (n = 6) or type 2 (n = 6) diabetes T2D (≥ twofold change in abundance in 162 and 165 GlcNAcylated proteins respectively compared to BMI-matched controls n = 11). Ingenuity pathway analysis indicated changes to clathrin-mediated endocytosis (CME) and CME-associated proteins, clathrin, Transferrin (TF), TF receptor and multiple Rabs, were identified as O-GlcNAcylation targets. Stimulating protein O-GlcNAcylation using glucosamine (2.5 mM) increased the rate of TF endocytosis by human placental cells (p = 0.02) and explants (p = 0.04). Differential GlcNAcylation of CME proteins suggests altered transfer of cargo by placentas of women with pre-gestational diabetes, which may contribute to alterations in fetal growth. The human placental O-GlcNAcome provides a resource to aid further investigation of molecular mechanisms governing placental nutrient sensing.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jason W. Sinclair ◽  
David R. Hoying ◽  
Erica Bresciani ◽  
Damian Dalle Nogare ◽  
Carli D. Needle ◽  
...  

AbstractThroughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration. Using this model, we show that tail amputation triggers an obligate metabolic shift to promote glucose metabolism during early regeneration similar to the Warburg effect observed in tumor forming cells. Inhibition of glucose metabolism did not affect the overall health of the embryo but completely blocked the tail from regenerating after amputation due to the failure to form a functional blastema. We performed a time series of single-cell RNA sequencing on regenerating tails with and without inhibition of glucose metabolism. We demonstrated that metabolic reprogramming is required for sustained TGF-β signaling and blocking glucose metabolism largely mimicked inhibition of TGF-β receptors, both resulting in an aberrant blastema. Finally, we showed using genetic ablation of three possible metabolic pathways for glucose, that metabolic reprogramming is required to provide glucose specifically to the hexosamine biosynthetic pathway while neither glycolysis nor the pentose phosphate pathway were necessary for regeneration.


2021 ◽  
Vol 22 (16) ◽  
pp. 8888
Author(s):  
Myoung Jun Kim ◽  
Hyuk Soon Kim ◽  
Sangyong Lee ◽  
Keun Young Min ◽  
Wahn Soo Choi ◽  
...  

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) performed by O-GlcNAc transferase (OGT) is a nutrient-responsive post-translational modification (PTM) via the hexosamine biosynthetic pathway (HBP). Various transcription factors (TFs) are O-GlcNAcylated, affecting their activities and significantly contributing to cellular processes ranging from survival to cellular differentiation. Given the pleiotropic functions of O-GlcNAc modification, it has been studied in various fields; however, the role of O-GlcNAcylation during osteoclast differentiation remains to be explored. Kinetic transcriptome analysis during receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that the nexus of major nutrient metabolism, HBP was critical for this process. We observed that the critical genes related to HBP activation, including Nagk, Gfpt1, and Ogt, were upregulated, while the global O-GlcNAcylation was increased concomitantly during osteoclast differentiation. The O-GlcNAcylation inhibition by the small-molecule inhibitor OSMI-1 reduced osteoclast differentiation in vitro and in vivo by disrupting the translocation of NF-κB p65 and nuclear factor of activated T cells c1 (NFATc1) into the nucleus by controlling their PTM O-GlcNAcylation. Furthermore, OSMI-1 had a synergistic effect with bone target therapy on osteoclastogenesis. Lastly, knocking down Ogt with shRNA (shOgt) mimicked OSMI-1’s effect on osteoclastogenesis. Targeting O-GlcNAcylation during osteoclast differentiation may be a valuable therapeutic approach for osteoclast-activated bone diseases.


Author(s):  
Dianhua Qiao ◽  
Melissa Skibba ◽  
Xiaofang Xu ◽  
Roberto P. Garofalo ◽  
Yingxin Zhao ◽  
...  

The paramyoxviridae, Respiratory Syncytial Virus (RSV) and murine respirovirus are enveloped, negative-sense RNA viruses that are the etiological agents of vertebrate respiratory tract infections (LRTIs). We observe RSV infection in human small airway epithelial cells induces accumulation of glycosylated proteins within the ER, increased Glutamine-Fructose-6-Phosphate Transaminases (GFPT1/2), and accumulation of UDP-N-acetylglucosamine, indicating activation of the hexosamine biosynthetic pathway (HBP). RSV infection induces rapid formation of spliced X-box binding protein 1 (XBP1s) and processing of activating transcription factor 6 (ATF6). Using pathway selective inhibitors and shRNA silencing, we find that the inositol requiring enzyme (IRE1a)-XBP1 arm of the UPR is required not only for activation of the HBP, but also for expression of mesenchymal transition (EMT) through the Snail family transcriptional repressor 1 (SNAI1), ECM-remodeling proteins fibronectin (FN1) and matrix metalloproteinase 9 (MMP9). Probing RSV-induced open chromatin domains by ChIP, we find XBP1 binds and recruits RNA Polymerase II to the IL6, SNAI1 and MMP9 promoters and the intragenic super-enhancer of GFPT2. The UPR is sustained through RSV by an autoregulatory loop where XBP1 enhances Pol II binding to its own promoter. Similarly, we investigated the effects of murine respirovirus infection its natural host (mouse). Murine respirovirus induces mucosal growth factor response, EMT and the indicators of ECM remodeling in an IRE1α-dependent manner, which persists after viral clearance. These data suggest that IRE1a-XBP1s arm of the UPR pathway is responsible for paramyxovirus-induced metabolic adaptation and mucosal remodeling via EMT and ECM secretion.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1156
Author(s):  
Jin Hyuk Jung ◽  
Mary R. Loeken

The high KM glucose transporter, GLUT2 (SLC2A2), is expressed by embryos and causes high rates of glucose transport during maternal hyperglycemic episodes in diabetic pregnancies and causes congenital malformations (diabetic embryopathy). GLUT2 is also a low KM transporter of the amino sugar, glucosamine (GlcN), which enters the hexosamine biosynthetic pathway (HBP) and provides substrate for glycosylation reactions. Exogenous GlcN also increases activity of the pentose phosphate pathway (PPP), which increases production of NADPH reducing equivalents. GLUT2-transported GlcN is inhibited by high glucose concentrations. Not all mouse strains are susceptible to diabetic embryopathy. The aim of this study was to test the hypothesis that susceptibility to diabetic embryopathy is related to differential dependence on exogenous GlcN for glycosylation or stimulation of the PPP. We tested this using murine embryonic stem cell (ESC) lines that were derived from embryopathy-susceptible FVB/NJ (FVB), and embryopathy-resistant C57Bl/6J (B6), embryos in the presence of low or high glucose, and in the presence or absence of GlcN. There were no significant differences in Glut2 expression, or of glucose or GlcN transport, between FVB and B6 ESC. GlcN effects on growth and incorporation into glycoproteins indicated that FVB ESC are more dependent on exogenous GlcN than are B6 ESC. GlcN stimulated PPP activity in FVB but not in B6 ESC. High glucose induced oxidative stress in FVB ESC but not in B6 ESC. These results indicate that FVB embryos are more dependent on exogenous GlcN for glycosylation, but also for stimulation of the PPP and NADPH production, than are B6 embryos, thereby rendering FVB embryos more susceptible to high glucose to induce oxidative stress.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xianhui Liu ◽  
Ivana Blaženović ◽  
Adam J. Contreras ◽  
Thu M. Pham ◽  
Christine A. Tabuloc ◽  
...  

AbstractThe integration of circadian and metabolic signals is essential for maintaining robust circadian rhythms and ensuring efficient metabolism and energy use. Using Drosophila as an animal model, we show that cellular protein O-GlcNAcylation exhibits robust 24-hour rhythm and represents a key post-translational mechanism that regulates circadian physiology. We observe strong correlation between protein O-GlcNAcylation rhythms and clock-controlled feeding-fasting cycles, suggesting that O-GlcNAcylation rhythms are primarily driven by nutrient input. Interestingly, daily O-GlcNAcylation rhythms are severely dampened when we subject flies to time-restricted feeding at unnatural feeding time. This suggests the presence of clock-regulated buffering mechanisms that prevent excessive O-GlcNAcylation at non-optimal times of the day-night cycle. We show that this buffering mechanism is mediated by the expression and activity of GFAT, OGT, and OGA, which are regulated through integration of circadian and metabolic signals. Finally, we generate a mathematical model to describe the key factors that regulate daily O-GlcNAcylation rhythm.


Sign in / Sign up

Export Citation Format

Share Document