Effect of sheep and human follicular fluid on the maturation of sheep oocytes in vitro

1994 ◽  
Vol 41 (4) ◽  
pp. 981-988 ◽  
Author(s):  
F.J. Sun ◽  
P. Holm ◽  
B. Irvine ◽  
R.F. Seamark
Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
H. Debbarh ◽  
N. Louanjli ◽  
S. Aboulmaouahib ◽  
M. Jamil ◽  
L. Ahbbas ◽  
...  

Summary Maternal age is a significant factor influencing in vitro fertilization (IVF) outcomes. Oxidative stress (OS) is one of the major causes of age-related cellular and molecular damage. The purpose of this work was to investigate the correlation between maternal age with intrafollicular antioxidants and OS markers in follicular fluid (FF), and also to determine the OS status in patients of advanced age. This study was a prospective study including 201 women undergoing IVF whose age was between 24 and 45 years old. FF samples were obtained from mature follicles at the time of oocyte retrieval. After treatment of FF, lipid peroxidation levels (MDA) and enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione (GSH) level were evaluated using spectrophotometry. The results indicated that the age cutoff point for increasing the MDA level was fixed at 37 years, allowing the study to be differentiated into two age groups. Group I included patients whose age was less than 37 years, and group II included patients whose age was greater than or equal 37 years. Statistical analysis revealed that MDA and GSH levels and GR activity were significantly higher in group II compared with group I. The SOD and CAT activities were significantly less in group II compared with group I. We concluded that from 37 years old a reproductive ageing was accompanied by a change in the antioxidant pattern in FF that impaired reactive oxygen species scavenging efficiency.


2012 ◽  
Vol 27 (4) ◽  
pp. 1025-1033 ◽  
Author(s):  
Evi M.L. Petro ◽  
Jo L.M.R. Leroy ◽  
Adrian Covaci ◽  
Erik Fransen ◽  
Diane De Neubourg ◽  
...  

1989 ◽  
Vol 121 (4) ◽  
pp. 578-580 ◽  
Author(s):  
J. A. Sundsfjord ◽  
F. Forsdahl ◽  
G. Thibault

Abstract. The concentrations of immunoreactive C-terminal (ANH-(99-126)) and N-terminal (ANH-(1-98)) portions of pro-ANH were measured in follicular fluid and plasma samples from 9 young women undergoing in vitro fertilization. ANH-(99-126) and ANH-(1-98)-like immunoreactivity levels in plasma were 6.0–25.4 (mean 12.2) pmol/1 and 184–427 (mean 300) pmol/1, respectively, whereas the corresponding levels in follicular fluid were 3.8–8.0 (mean 4.9) pmol/1 and 169–385 (mean 262) pmol/1. The concentrations of both ANH-like peptides were consistently lower (p < 0.01) in the follicular fluid than in the matched plasma samples, but within the variation found in plasma controls. It is concluded that ANH-like peptides in the follicular fluid, whether secreted locally or derived from circulating ANH, might play a physiological role in the biosynthesis of ovarian steroid hormones or follicular maturation and fluid dynamics.


2012 ◽  
Vol 24 (1) ◽  
pp. 206
Author(s):  
C. Makloski ◽  
R. Gotti ◽  
K. Harris ◽  
J. Bottger ◽  
M. Meintjes

The aim of this study was 2-fold: (1) To determine if altrenogest-treated mares will yield higher numbers of quality in vitro-matured (IVM) oocytes than early pregnant mares and cycling/control mares and (2) if the addition of human follicular fluid (HFF) to IVM medium can support IVM and viable pregnancies from in vitro-produced blastocysts. In this study, 18 mares were assigned to 3 equally sized treatment groups and each mare was subjected to follicle aspiration every 10 to 11 days without monitoring follicular growth. The 3 treatment groups were altrenogest-treated mares (0.044 mg kg–1 of PO daily), early pregnant mares (30–110 days) and control/cycling mares. Using transvaginal ultrasound guidance, all visible follicles were aspirated. Altrenogest-treated mares each yielded more follicles (8.75) per aspiration session when compared with the control mare group (5.75) and the pregnant mare group (3.72), but there was no difference in oocyte recovery rates among the groups (Table 1). A limited number of these oocytes were subjected to in vitro maturation. After heated (38.5°C) transport of oocytes to an off-site laboratory, the oocytes were placed in maturation medium containing 10% HFF obtained from preovulatory follicles after ovulation induction, 20% serum substitute supplement and no hormones for 36 h. This approach yielded a maturation rate of 61.8, 68.8 and 82.0% for the altrenogest, pregnant and control treatment groups, respectively (not significant). Mature oocytes (n = 65) were injected with frozen-thawed sperm using a standard intracytoplasmic sperm injection (ICSI) technique. Four expanding blastocysts (Table 1) were selectively transported back to the embryo transfer facility and transcervically transferred into recipient mares on Day 6 post-ICSI. These 4 transfers resulted in 2 viable, normally progressing pregnancies, ongoing beyond 60 days of gestation. Both pregnancies resulted from the altrenogest-treated aspiration group. In this study we concluded that (1) altrenogest-treated mares provide more follicles and may be a better source of viable immature oocytes for the production of ICSI embryos and foals, but their overall advantage is unclear; (2) addition of HFF to IVM media, in the absence of added gonadotropins, can support oocyte maturation, blastocyst production and viable pregnancies; (3) an aspiration schedule of every 10 to 11 days without ultrasonic monitoring can yield viable immature oocytes, capable of producing ICSI blastocysts, resulting in viable pregnancies. Table 1.Altrenogest-treated mares compared to early pregnant mares and control mares


Sign in / Sign up

Export Citation Format

Share Document