scholarly journals Viability of cloned bovine embryos after one or two cycles of nuclear transfer and in vitro culture

1995 ◽  
Vol 44 (7) ◽  
pp. 925-933 ◽  
Author(s):  
F.J. Ectors ◽  
A. Delval ◽  
L.C. Smith ◽  
K. Touati ◽  
B. Remy ◽  
...  
2010 ◽  
Vol 22 (1) ◽  
pp. 188
Author(s):  
G. G. Kaiser ◽  
P. J. Ross ◽  
K. Wang ◽  
J. B. Cibelli

In this study we evaluated mitochondrial distribution of individual bovine embryos after IVF, parthenogenetic activation (PG), and somatic cell nuclear transfer (SCNT). COCs obtained from slaughterhouse ovaries were matured in vitro for at least 18 h in TCM-199 supplemented with hormones, and then divided into 3 groups. SCNT and PG oocytes were stripped by vortexing in HEPES-HECM (hamster embryo culture medium) medium (HH) containing hyaluronidase and metaphase II (MII) oocytes selected by visualization of a polar body. The PG group oocytes were exposed 24h post-maturation to 5 μM ionomycin in HH for 4 min, then rinsed 3 times in HH and allocated to a 4-h culture in 2 mM DMAP in KSOM for activation. The SCNT group oocytes were included in a nuclear transfer procedure performed as previously described (Ross et al. 2006 Biotechniques 41, 741-750). Activation was performed as described for the PG group. The IVF group COCs were co-incubated for 20 h with 106 spermatozoa/mL in IVF-TALP supplemented with heparin. To label mitochondria, 1 mM MitoTracker CMXRos Red (Molecular Probes, Eugene, OR, USA) was added to HH at a final concentration of 0.3 μM. Samples were cultured for 15 min, washed in HH, placed in a glass-bottomed 35-mm Petri dish, and then observed and live photographed by using a spinning disk confocal microscope (Nikon Eclipse TE2000-E + CARV Confocal) equipped with a Cascade 512 B camera (Roper Scientific, Tucson, AZ, USA) using a Nikon 40×, 1.3 NA oil objective lens. Z series images were taken acquiring 15 focal planes at 10-μm intervals. Analysis was performed using Metamorph software. Samples were taken at pronuclear, 4 cell, and morula stages. Each sample was classified for its mitochondrial localization in pericytoplasm, cytoplasm, and perinuclear. Data was analyzed by proc glimmix (SAS, Cary, NC, USA). Significance was set at P < 0.05. A similar pericytoplasmic distribution of mitochondria for all treatments up to the 4-cell stage was observed. At the pronucelar stage, mitochondria distribution was mostly pericytoplasmic, changing to cytoplasmic at the 4-cell stage. At the morula stage there was a significantly higher number of embryos with perinuclear distribution in IVF than in PG and SCNT embryos (Table 1). Our findings demonstrate that mitochondrial reorganization differs in fertilized more-developed embryos compared with their activated counterparts. This may have implications for further embryo development, mainly after SCNT. Table 1.Mitochondria distribution in fertilized, parthenogenetic, and cloned bovine embryos


2010 ◽  
Vol 22 (1) ◽  
pp. 307
Author(s):  
M. M. Souza ◽  
N. Z. Saraiva ◽  
C. S. Oliveira ◽  
T. A. D. Tetzner-Nanzeri ◽  
R. Vantini ◽  
...  

The use of fetal bovine serum (FBS) as protein supplementation in IVP of bovine embryos has presented difficulties because it can introduce a number of pathogenic components in culture systems, can be related to the birth of calf with abnormal growth and development, and precludes the establishment of the actual nutritional needs of the embryo, because it contains an unlimited variety of substances. This study evaluated the replacement of the FBS in the medium of in vitro culture (IVC) of bovine embryos, using the knockout serum replacer (KSR) as protein supplementation and culture medium conditioned with stem cells. Therefore, bovine oocytes from ovaries of slaughterhouse were selected and matured in vitro in TCM-199 medium supplemented with 10% FBS (Crypion), 1.0 μg mL-1 FSH (Pluset®, Calier, Barcelona, Spain), 50 μg mL-1 hCG (Profasi®, Serono, Geneva, Switzerland), 1.0 μg mL-1 estradiol (Sigma E-2758, Sigma Chemical, St. Louis, MO, USA), 0.2 mM sodium pyruvate, and 83.4 μg mL-1 amikacin for 24 h. After that, 1144 oocytes were fertilized in IVF-TALP medium containing 6 mg mL-1 of BSA. After 18 to 22 h, the zygotes were cultured in SOF + 5% FBS (group 2); SOF + 5% KSR (group 3); SOF (5% FBS) + 10% SOF (5% FBS) conditioned by stem cells (group 4); or SOF (5% KSR) + 10% SOF (5% KSR) conditioned by stem cells (group 5), in an atmosphere of 5% O2 at 38.5°C for 8 days. A control group outside the controlled atmosphere was added, supplemented with 5% FBS (group 1). The SOF medium supplemented with 5% FBS or KSR was conditioned by stem cells and added to SOF medium for the culture of embryo at a concentration of 10%. The rates of cleavage and production of blastocysts were assessed 48 hours and 7 days after IVF, respectively, and analyzed by chi-square test, with a significance level of 5% in the statistical program Minitab® (release 14.1, Minitab, State College, PA, USA). On the eighth day, the TUNEL test for determination of the percentage of apoptosis and the differential staining technique for determination of inner cell mass (ICM) and trophoblast (TF) were performed. The results were submitted to ANOVA, followed by comparing the means by Tukey’s test using the program GraphPad Prism (GraphPad, San Diego, CA, USA). The treatments did not differ in the production of embryos, being similar to the control group: G1 = 31.75% (74/233), G2 = 35.26% (79/224), G3 = 32.70% (74/226), G4 = 28.76% (63/219), and G5 = 26.85% (65/242). With regard to the assessment of embryonic quality, the treatments showed similar results to the control groups. No differences were observed among groups both in color and ICM/TF ratio (G1 = 0.60, G2 = 0.62, G3 =0.65, G4 = 0.60, and G5 = 0.60). Furthermore, the TUNEL showed no significant difference in the percentage of apoptosis among groups (G1 = 7.10%, G2 = 3.76%, G3 = 5.58%, G4 = 4.50%, and G5 = 4.11%). The data obtained so far indicate that it is possible to produce embryos in vitro by replacing the FBS in the culture, achieving results similar to those obtained with serum. Financial support: FAPESP 2007/58506-6.


2014 ◽  
Vol 26 (1) ◽  
pp. 155
Author(s):  
L. Baldoceda ◽  
C. Vigneault ◽  
P. Blondin ◽  
C. Robert

Mitochondria play an important role during early mammalian embryo development through their diverse cellular functions, in particular creating balance between production of ATP by electron transport chain and oxidative stress. Embryonic mitochondria are inherited maternally and independently of the nuclear genome. They show limited activity during the early developmental stages before embryonic genome activation. It has been shown that in vitro culture (IVC) has an adverse effect on mitochondrial function in embryos. So far several attempts have been performed to improve and rescue the impaired mitochondria. It has been shown that vitamin K2 (a membrane-bound electron carrier, similar to ubiquinone) was used to rescue mitochondrial dysfunction and resulted in more efficient ATP production in eukaryotic cells (Vos et al. 2012 Science 336, 1306–1310). Therefore, the aim of the present study was to investigate the effects of supplementation of vitamin K2 on mitochondrial activity and blastocyst rate. Cumulus–oocytes complexes (n = 687) recovered from slaughtered animals, were matured and fertilized in vitro according to our standard procedures. After fertilization, zygotes were cultured in SOF media supplemented with 10 mg mL–1 BSA. At 96 h post-fertilization, vitamin K2 was added to the culture media (n = 448 oocytes). On Day 7, treatment embryos were compared with untreated controls (n = 239 oocytes). In vitro culture was carried out at 38.5°C under 5% CO2, 7% O2, and 88% N2. Differences among groups in blastocyst yield were analysed by ANOVA. Mitochondrial activity data was analysed by unpaired 2-tailed t-tests. Results show that the vitamin K2-treated group had a significantly (P < 0.05) higher blastocyst rate (+8.6%), expanded blastocyst rate (+7.8%), as well as better morphological quality compared with the control group. Furthermore, to evaluate mitochondria activity, pools of embryos of each treatment were labelled with a specific dye for active mitochondria (Mitotracker Red). A significantly higher intensity of Mitotracker Red (P < 0.05) was observed in the vitamin K2 treatment versus control group, as measured by fluorescent microscopy. In conclusion, for the first time, our data prove that supplementation of vitamin K2 during IVC of bovine embryos increases blastocyst rates and embryo quality. Future studies will focus on gene expression to identify targets implicated in impaired mitochondrial activity in in vitro bovine embryo production.


2008 ◽  
Vol 20 (1) ◽  
pp. 106
Author(s):  
M. J. Sansinena ◽  
D. Owiny ◽  
R. S. Denniston ◽  
D. Salamone ◽  
D. Barry

The riverine rabbit (Bunolagus monticulares), one of South Africa's most threatened mammals, with an estimated population size under 250, was upgraded from endangered to critically endangered in 2002. The low number of riverine rabbits precludes any attempts of nuclear transfer (NT) using intraspecific oocytes; therefore, the overall aim of this study was to assess the ability of the domestic rabbit (Oryctolagus cuniculus) oocyte to reprogram the somatic cell of the endangered riverine rabbit by interspecies NT. A preliminary study evaluated the effect of timing of enucleation after induction of ovulation (h post-hCG). A second study assessed the effects of two activation protocols. In addition, since the unique characteristics of the rabbit zona pellucida affect the speed of micromanipulation, different exposure periods to UV light at enucleation were evaluated. Adult domestic Californian rabbits were treated with eCG for 72 h, and ovulation was induced by hCG administration. Oocytes were collected by retrograde flushing at 12–14 h or 16–18 h post-hCG administration and stripped of cumulus investments with 0.5% hyaluronidase in Ca-Mg-free PBS. Metaphase-II oocytes were selected by visualizing the first polar body. Oocytes were stained with 2 mg mL–1 Hoechst 33342 for 5 min, and metaphase plates were removed with a 25–30 μm (O.D.) borosilicate beveled, spiked pipette after exposure to <5 or 30–40 s of UV light. Adult adipose-derived riverine rabbit fibroblasts grown to confluency in DMEM with 10% FCS were used as donor cells and fused with 2 consecutive DC pulses (3.2 kV cm–1, 45 μs). After reconstruction, couplets were randomly assigned for activation by either a second set of electrical pulses or incubation with ionomycin, followed by 1 h of incubation in 2 mm 6-DMAP. Embryos were co-cultured with a bovine oviductal cell monolayer in DMEM with 10% FCS and assessed for cleavage after 36 h of in vitro culture. There was a significant difference in the number of cleaved embryos from oocytes collected at 12–14 h post-hCG (n = 50) or 16–18 h post-hCG (n = 51) administration (57% v. 0% cleaved; P < 0.05). No significant difference was detected in embryos developing after electrofusion v. ionomycin activation treatments. However, a significantly greater number (P < 0.05) of embryos cleaved from oocytes exposed to <5 s UV than from oocytes exposed to 30–40 s UV (Table 1). A total of 20 embryos (4-cell to 16-cell stages) were surgically transferred to the oviducts of 4 adult New Zealand white synchronized recipients after 48 h of in vitro culture. Two recipients (<5 s UV exposure treatment group) were diagnosed pregnant by abdominal palpation at 15 days post-transfer; pregnancies were subsequently lost by Day 30, with placental tissues recovered. This preliminary study indicates the domestic rabbit oocyte is capable of reprogramming riverine rabbit donor cells. In addition, the time of oocyte collection after ovulation induction and the UV exposure period during enucleation have an effect on the efficiency of interspecies NT and embryo development in this species. Table 1. Effect of UV exposure during enucleation on the in vitro development of interspecies nuclear transfer riverine rabbit embryos


2014 ◽  
Vol 26 (1) ◽  
pp. 123
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
P. Hassel ◽  
...  

Two nuclear transfer (NT) techniques are routinely used to produce cloned animals, traditional cloning (TC) and handmade cloning (HMC). The TC embryos keep their zona and can be transferred at early stages, whereas HMC embryos are zona-free and must be cultured to the morula/blastocyst stage before transfer. Some studies have shown that in vitro culture reduces embryo development and quality, but it is not known whether embryos produced by TC or HMC differ because of the NT method or the in vitro culture. Therefore, we investigated the developmental competence and histone acetylation (H3K18ac) of porcine NT embryos produced by TC and HMC with (Day 5 and 6) or without (Day 0) in vitro culture. Nuclear transfer experiments were performed on same day (Day 0), using same batch of porcine oocytes and donor cells and same in vitro culture conditions. Cloning procedures were previously described (TC : Cloning Stem Cells 10 : 355; HMC : Zygote 20 : 61). Parthenogenetically activated embryos (PA) were used as control of activation and culture conditions. Embryos from all groups were collected for immunostaining of H3K18ac on Days 0, 5, and 6. The normalized H3K18ac level was calculated as previously described (Epigenetics 6 : 177). Cell numbers per blastocyst in each group were counted on Days 5 and 6. The cleavage rate (Day 2) and blastocyst rates (Days 5 and 6) between groups were analysed by Chi-squared test, whereas cell number per blastocysts and H3K18ac level between groups and days were analysed by ANOVA (SAS version 9.2; SAS Institute Inc., Cary, NC, USA). Cleavage rate of HMC embryos was lower than that of TC embryos, but blastocyst rate and cell number per blastocyst were higher in the HMC group compared with TC (Table 1). Differences of H3K18ac level between HMC, TC, and PA groups were only observed on Day 6 but not on Day 0 or Day 5. Within HMC and TC groups, there was no difference in H3K18ac level between Day 0 and Day 5, but the level was lower on Day 6 compared with Day 5 in the HMC group, whereas the TC group displayed the opposite pattern. In conclusion, NT embryos produced by HMC show higher blastocyst rate and cell number per blastocyst compared with TC embryos. Both in vitro culture and the NT method result in differences of the normalized H3K18ac levels. Further study is needed to investigate putative differences between NT embryos produced by HMC and TC compared to in vivo embryos also after transfer to recipients. Table 1.Cleavage and blastocyst rate, cell numbers, and normalized H3K18ac level for handmade cloning (HMC), traditional cloning (TC), and parthenogenetically activated (PA) embryos1


2010 ◽  
Vol 22 (1) ◽  
pp. 185
Author(s):  
R. P. C. Gerger ◽  
F. Forell ◽  
J. C. Mezzalira ◽  
F. Zago ◽  
F. K. Vieira ◽  
...  

Despite the apparent success of cloning by somatic cell nuclear transfer (SCNT), the efficiency in development to term remains low, with a high rate of losses occurring throughout pregnancy due to faulty reprogramming and conceptus abnormalities. As the ideal fusion-activation interval for optimal nuclear reprogramming after cloning is still ill-defined, the aim of this study was to determine the effect of 2 distinct fusion-activation intervals and embryo aggregation on in vitro development of cloned bovine embryos. Bovine COCs from slaughterhouse ovaries were used after IVM for the production of cloned embryos by handmade cloning, according to our established procedures (Ribeiro et al. 2009 Cloning Stem Cells, in press). Following cumulus and zona removal, oocytes were manually bisected, with hemi-cytoplasts selected by DNA staining. Two hemi-cytoplasts and an adult skin somatic cell were attached and fused with a 15V AC pre-pulse for 5 s, followed by a double 1.2 kV cm-1 DC pulse for 20 μs. Reconstructed embryos were activated in ionomycin exactly at 2 or 4 h post-fusion (2 hpf or 4 hpf), followed by an incubation in 6-DMAP for 4 h. Cloned embryos from both fusion-activation intervals were in vitro-cultured in the well of the well (WOW) system for 7 days, allocating one (1 × 100%) or two (2 × 100%) cloned embryos per WOW. Grade 1 Day-7 blastocysts were transferred to synchronous recipients. Cleavage (Day 2) and blastocyst (Day 7) rates, on a per WOW basis, and pregnancy (Days 30 and 150) rates were compared using the chi-square or the Fisher test, with results from 9 replications summarized in Table 1. Increasing the fusion-activation interval to 4 h decreased cleavage but not blastocyst rates in 1 × 100% embryos. Also, blastocyst rates were lower in 1 × 100% embryos activated 2 h post-fusion. In general, cleavage and blastocysts rates for 2 × 100% embryos (91.5 and 46.0%) were higher than for 1 × 100% embryo counterparts (74.4 and 31.3%), respectively, regardless of the activation time. In addition, blastocyst rates for 4 hpf-activated embryos (50.3%), based on cleavage, were higher than for 2 hpf-activated embryos (38.3%), irrespective of the aggregation scheme. Nonetheless, despite differences in in vitro development, pregnancy rates and conceptus development in the first half of pregnancy were similar between groups. A longer fusion-activation interval (4 hpf) or embryo aggregation (2 × 100%) increased blastocyst yield but did not improve in vivo development and pregnancy maintenance following the transfer to female recipients in cattle. Table 1.In vitro and in vivo development of cloned bovine embryos This study was supported by FAPESP and CAPES, Brazil.


2012 ◽  
Vol 24 (1) ◽  
pp. 232
Author(s):  
L. N. Moro ◽  
G. Vichera ◽  
D. Salamone

Transgenic animals have important applications in agriculture and human medicine; nevertheless the available techniques still remain inefficient and technically difficult. We have recently developed a novel method to transfect bovine embryos that consists of intracytoplasmic injection of exogenous DNA–liposome complexes (eDNA-LC) in IVF zygotes. This study was designed to evaluate the quality and viability of IVF bovine embryos, after intracytoplasmic injection of pCX-EGFP–liposome complexes (EGFP-LC) or pBCKIP2.8-liposome complexes (plasmid that codifies the human insulin gene, HI-LC). First, we evaluated embryo development and enhanced green fluorescent protein (EGFP) expression of IVF embryos injected with both plasmids separately. This treatment was analysed by Fisher's Exact test (P ≤ 0.05). Cleavage rates for EGFP-LC, HI-LC and IVF embryos injected with liposomes alone (IVF-L) and IVF control (IVF-C) were 62% (63/102), 67% (67/100), 66% (67/101) and 79% (98/124); blastocysts rates were 17% (17/102), 21% (21/100), 21% (21/101) and 23% (28/124), respectively. No statistical differences were seen among groups. The percentage of EGFP-positive embryos (EGFP+) after EGFP-LC injection was 42.9% after 3 days of culture and 41.8% at the blastocyst stage. In the second experiment, the blastocysts obtained, EGFP+ or EGFP-negative (EGFP–), were analysed by TUNEL assay at Day 6 (Bd6), 7 (Bd7) and 8 (Bd8) of in vitro culture, in order to evaluate the effect of the transgene and culture length, on DNA fragmentation. This treatment was analysed by the difference of proportions test (P ≤ 0.05) using statistical INFOSTAT software. All EGFP+ blastocysts showed TUNEL positive cells (T+). The percentage of T+ in Bd6, Bd7 and Bd8 were 91, 73.7 and 99.5%, respectively (P ≤ 0.05). EGFP– blastocysts showed lower fragmented nuclei (0, 44.6 and 85%, respectively; P ≤ 0.05). Groups IVF-L and IVF-C were also evaluated. In both groups, there was no evidence of DNA fragmentation in Bd6 and Bd7, but T+ were detected in Bd8 (66.4 and 85.8%, respectively; P ≤ 0.05). In the third experiment, bovine blastocysts obtained from the HI-LC group were individually transferred to recipient cows after 6 (n = 11), 7 (n = 5) and 8 (n = 5) days of culture post-IVF and HI-LC injection. The pregnancies obtained were from Bd6 [18.2% (2/11)] and Bd7 [40% (2/5)], although none of the recipients receiving Bd8 were diagnosed pregnant. Two pregnancies developed to term, one derived from Bd6 and the other from Bd7. Analysis by PCR determined that none of the born cows were transgenic. In summary, IVF bovine embryos could be easily transfected after the injection of eDNA-LC and the technique did not affect offspring viability. The results indicate that extended time in in vitro culture increases the percentage of fragmented nuclei in blastocysts. Moreover, this parameter increases in blastocysts with transgene expression compared with those without expression. Finally, more transfers are required in order to obtain the real efficiency of this new technique and to overcome the drawbacks generated by in vitro culture length and transgene expression.


1999 ◽  
Vol 55 (3-4) ◽  
pp. 151-162 ◽  
Author(s):  
M Stojkovic ◽  
M Büttner ◽  
V Zakhartchenko ◽  
J Riedl ◽  
H.-D Reichenbach ◽  
...  

1992 ◽  
Vol 37 (1) ◽  
pp. 255
Author(s):  
K.J. McLaughlin ◽  
D.M. McLean ◽  
P.A. Lewis ◽  
L. Hicks ◽  
G. Stevens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document