240 QUALITY AND VIABILITY OF IVF BOVINE EMBRYOS AFTER INTRACYTOPLASMIC INJECTION OF DNA–LIPOSOME COMPLEXES

2012 ◽  
Vol 24 (1) ◽  
pp. 232
Author(s):  
L. N. Moro ◽  
G. Vichera ◽  
D. Salamone

Transgenic animals have important applications in agriculture and human medicine; nevertheless the available techniques still remain inefficient and technically difficult. We have recently developed a novel method to transfect bovine embryos that consists of intracytoplasmic injection of exogenous DNA–liposome complexes (eDNA-LC) in IVF zygotes. This study was designed to evaluate the quality and viability of IVF bovine embryos, after intracytoplasmic injection of pCX-EGFP–liposome complexes (EGFP-LC) or pBCKIP2.8-liposome complexes (plasmid that codifies the human insulin gene, HI-LC). First, we evaluated embryo development and enhanced green fluorescent protein (EGFP) expression of IVF embryos injected with both plasmids separately. This treatment was analysed by Fisher's Exact test (P ≤ 0.05). Cleavage rates for EGFP-LC, HI-LC and IVF embryos injected with liposomes alone (IVF-L) and IVF control (IVF-C) were 62% (63/102), 67% (67/100), 66% (67/101) and 79% (98/124); blastocysts rates were 17% (17/102), 21% (21/100), 21% (21/101) and 23% (28/124), respectively. No statistical differences were seen among groups. The percentage of EGFP-positive embryos (EGFP+) after EGFP-LC injection was 42.9% after 3 days of culture and 41.8% at the blastocyst stage. In the second experiment, the blastocysts obtained, EGFP+ or EGFP-negative (EGFP–), were analysed by TUNEL assay at Day 6 (Bd6), 7 (Bd7) and 8 (Bd8) of in vitro culture, in order to evaluate the effect of the transgene and culture length, on DNA fragmentation. This treatment was analysed by the difference of proportions test (P ≤ 0.05) using statistical INFOSTAT software. All EGFP+ blastocysts showed TUNEL positive cells (T+). The percentage of T+ in Bd6, Bd7 and Bd8 were 91, 73.7 and 99.5%, respectively (P ≤ 0.05). EGFP– blastocysts showed lower fragmented nuclei (0, 44.6 and 85%, respectively; P ≤ 0.05). Groups IVF-L and IVF-C were also evaluated. In both groups, there was no evidence of DNA fragmentation in Bd6 and Bd7, but T+ were detected in Bd8 (66.4 and 85.8%, respectively; P ≤ 0.05). In the third experiment, bovine blastocysts obtained from the HI-LC group were individually transferred to recipient cows after 6 (n = 11), 7 (n = 5) and 8 (n = 5) days of culture post-IVF and HI-LC injection. The pregnancies obtained were from Bd6 [18.2% (2/11)] and Bd7 [40% (2/5)], although none of the recipients receiving Bd8 were diagnosed pregnant. Two pregnancies developed to term, one derived from Bd6 and the other from Bd7. Analysis by PCR determined that none of the born cows were transgenic. In summary, IVF bovine embryos could be easily transfected after the injection of eDNA-LC and the technique did not affect offspring viability. The results indicate that extended time in in vitro culture increases the percentage of fragmented nuclei in blastocysts. Moreover, this parameter increases in blastocysts with transgene expression compared with those without expression. Finally, more transfers are required in order to obtain the real efficiency of this new technique and to overcome the drawbacks generated by in vitro culture length and transgene expression.

Zygote ◽  
2012 ◽  
Vol 22 (2) ◽  
pp. 195-203 ◽  
Author(s):  
G. Vichera ◽  
L.N. Moro ◽  
C. Buemo ◽  
D. Salamone

SummaryThis study was designed to evaluate the quality and viability of bovine embryos produced by in vitro fertilization (IVF), after intracytoplasmic injection of pCX–EGFP–liposome complexes or pBCKIP2.8–liposome complexes (plasmids that codify the human insulin gene). Cleavage, blastocysts and expanded blastocysts rates of these both groups were not different from that of controls (IVF or IVF embryos injected with liposomes alone; IVF-L). The percentage of EGFP-positive (EGFP+) blastocysts was 41.8%. In Experiment 2, the blastocysts obtained after injection of pCX–EGFP–liposome complexes that did or did not express the transgene, were analyzed by TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labelling) assay at days 6, 7 and 8 of culture in vitro(Bd6, Bd7 and Bd8), in order to evaluate DNA fragmentation. The EGFP+ blastocysts showed different proportions of TUNEL-positive cells (T+) at Bd6, Bd7 and Bd8 (91, 73.7 and 99.5%, respectively) while blastocysts without EGFP expression (EGFP−) showed statistically lower numbers of fragmented nuclei (0, 44.6 and 85%, respectively; P < 0.05). There was no evidence of DNA fragmentation in either Bd6 or Bd7 IVF and IVF-L control blastocysts, but T+ nuclei were detected at Bd8 in both groups (66.4 and 85.8% respectively). Finally, IVF blastocysts (n = 21) injected with insulin–liposome complexes, cultured for 6, 7 and 8 days, were transferred to recipient cows. Pregnancy rates of 18.2% (2/11) and 40% (2/5) resulted from the transfer of Bd6 and Bd7 cells, respectively. Two pregnancies developed to term but they were not transgenic for the insulin gene. In conclusion, EGFP expression affects DNA integrity but not embryo development. Moreover, additional transfers are required in order to overcome the drawbacks generated by in vitro culture length and transgene expression.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Thu T. Duong ◽  
James Lim ◽  
Vidyullatha Vasireddy ◽  
Tyler Papp ◽  
Hung Nguyen ◽  
...  

Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ acrossin vitroand ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.


2011 ◽  
Vol 23 (1) ◽  
pp. 263
Author(s):  
F. Pereyra-Bonnet ◽  
A. Gibbons ◽  
M. Cueto ◽  
R. Bevacqua ◽  
L. Escobar ◽  
...  

Microinjection of DNA into the male pronucleus is a commonly used method to generate transgenic animals. However, it is only moderately efficient in several species because it requires proper male pronuclear visualisation, which occurs only in a narrow window of time in mice. The cytoplasmic microinjection of exogenous DNA (eDNA) is an alternative method that has not been fully investigated. Our objective was to evaluate if cytoplasmic microinjection of eDNA is capable of producing genetically modified embryos. In vitro and in vivo derived sheep embryos were cytoplasmically microinjected with pCX-EGFP previously incubated (5 min in a PVP droplet) with oolemma-cytoplasm fragments obtained from donor oocytes by microsurgery. A control group using microinjected plasmid alone was included in the in vivo procedure. For in vitro microinjection, IVF embryos were microinjected with circular plasmid with promoter (50 or 500 ng μL–1) or without promoter (50 ng μL–1) at 6 h after fertilization. The IVF was performed following (Brackett and Olliphant 1975 Biol. Reprod. 12, 260–274) with 15 × 106 spermatozoa mL–1, and presumptive zygotes were cultured in SOF. The expression of enhance green fluorescent protein (EGFP) was determined under blue light. For in vivo microinjection, embryos from superovulated sheep (by standard procedures) were recovered and microinjected with 50 ng μL–1 of linearized plasmid without promoter at 12 h after laparoscopic insemination with frozen semen (100 × 106 spermatozoa per sheep). Plasmid without promoter was used to avoid any possible cytotoxic effect produced by EGFP expression. The microinjection of IVF embryos with 50 ng μL–1 of plasmid was the best condition to produce embryos expressing eDNA (n = 96; 46.9% cleaved; 12.2% blastocysts; 53.0 and 4.1% of green embryos and blastocysts, respectively). Variables between the groups with or without promoter IVF were not statistically different (Fisher test: P < 0.05); however, when 500 ng μL–1 was microinjected, no blastocysts were obtained. In the in vivo embryo production group, 111 presumptive zygotes were microinjected (n = 37; with plasmid alone) from 16 donor sheep (11.5 ± 4.0 corpora lutea; 8.4 ± 4.8 presumptive zygotes recovered; 74.3% recovery rate). The mean time from injection to cleavage was 18.0 ± 4.5 h, and the percentage of cleavage and damage (due to the embryo injection) were >70% and <10%, respectively. Fifty-eight good quality embryos were transferred into the oviducts of 19 surrogate ewes; 12 of them are pregnant (63.1%). The presence of green IVF embryos demonstrates that eDNA was transported to the nucleus after cytoplasmic injection. We believe that the multi-fold increase (50- to 100-fold) in plasmid concentration compared with that used by others was the key step to our successful cytoplasmic microinjection. Accordingly, the new/old methodology described in this study provides an easy DNA construct delivery system of interest for the implementation of early reprogramming events. In addition, results obtained in the near future using in vivo cytoplasmic microinjection with high concentrations of eDNA could revalidate this technique for producing genetically modified large animals.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 259-272 ◽  
Author(s):  
Francisco A García-Vázquez ◽  
Salvador Ruiz ◽  
Carmen Matás ◽  
M José Izquierdo-Rico ◽  
Luis A Grullón ◽  
...  

Sperm-mediated gene transfer (SMGT) is a method for the production of transgenic animals based on the intrinsic ability of sperm cells to bind and internalize exogenous DNA molecules and to transfer them into the oocyte at fertilization. Recombinase-A (RecA) protein-coated exogenous DNA has been used previously in pronuclear injection systems increasing integration into goat and pig genomes. However, there are no data regarding transgene expression after ICSI. Here, we set out to investigate whether the expression of transgenic DNA in porcine embryos is improved by recombinase-mediated DNA transfer and if it is possible to generate transgenic animals using this methodology. Different factors which could affect the performance of this transgenic methodology were analyzed by studying 1) the effect of the presence of exogenous DNA and RecA protein on boar sperm functionality; 2) the effect of recombinase RecA on in vitro enhanced green fluorescent protein (EGFP)-expressing embryos produced by ICSI or IVF; and 3) the efficiency of generation of transgenic piglets by RecA-mediated ICSI. Our results suggested that 1) the presence of exogenous DNA and RecA–DNA complexes at 5 μg/ml did not affect sperm functionality in terms of motility, viability, membrane lipid disorder, or reactive oxygen species generation; 2) EGFP-expressing embryos were obtained with a high efficiency using the SMGT–ICSI technique in combination with recombinase; however, the use of IVF system did not result in any fluorescent embryos; and 3) transgenic piglets were produced by this methodology. To our knowledge, this is the first time that transgenic pigs have been produced by ICSI-SGMT and a recombinase.


Reproduction ◽  
2013 ◽  
Vol 145 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Shahin Eghbalsaied ◽  
Kamran Ghaedi ◽  
Götz Laible ◽  
Sayed Morteza Hosseini ◽  
Mohsen Forouzanfar ◽  
...  

Transgenic mammals have been produced using sperm as vectors for exogenous DNA (sperm-mediated gene transfer (SMGT)) in combination with artificial insemination. Our study evaluated whether SMGT could also be achieved in combination with IVF to efficiently produce transgenic bovine embryos. We assessed binding and uptake of fluorescently labelled plasmids into sperm in the presence of different concentrations of dimethyl sulphoxide or lipofectamine. Live motile sperm displayed a characteristic punctuate fluorescence pattern across their entire surface, while uniform postacrosomal fluorescence was only apparent in dead sperm. Association with sperm or lipofection reagent protected exogenous DNA from DNase I digestion. Following IVF, presence and expression of episomal and non-episomal green fluorescent protein (GFP)-reporter plasmids was monitored in oocytes and embryos. We found no evidence of intracellular plasmid uptake and none of the resulting zygotes (n=96) and blastocysts were GFP positive by fluorescence microscopy or genomic PCR (n=751). When individual zona-free oocytes were matured, fertilised and continuously cultured in the presence of episomal reporter plasmids until the blastocyst stage, most embryos (38/68=56%) were associated with the exogenous DNA. Using anti-GFP immunocytochemistry (n=48) or GFP fluorescence (n=94), no GFP expression was detected in blastocysts. By contrast, ICSI resulted in 18% of embryos expressing the GFP reporter. In summary, exposure to DNA was an inefficient technique to produce transgenic bovine sperm or blastocysts in vitro.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3304-3315 ◽  
Author(s):  
Marti F.A. Bierhuizen ◽  
Yvonne Westerman ◽  
Trudi P. Visser ◽  
Wati Dimjati ◽  
Albertus W. Wognum ◽  
...  

Abstract The further improvement of gene transfer into hematopoietic stem cells and their direct progeny will be greatly facilitated by markers that allow rapid detection and efficient selection of successfully transduced cells. For this purpose, a retroviral vector was designed and tested encoding a recombinant version of the Aequorea victoria green fluorescent protein that is enhanced for high-level expression in mammalian cells (EGFP). Murine cell lines (NIH 3T3, Rat2) and bone marrow cells transduced with this retroviral vector demonstrated a stable green fluorescence signal readily detectable by flow cytometry. Functional analysis of the retrovirally transduced bone marrow cells showed EGFP expression in in vitro clonogenic progenitors (GM-CFU), day 13 colony-forming unit-spleen (CFU-S), and in peripheral blood cells and marrow repopulating cells of transplanted mice. In conjunction with fluorescence-activated cell sorting (FACS) techniques EGFP expression could be used as a marker to select for greater than 95% pure populations of transduced cells and to phenotypically define the transduced cells using antibodies directed against specific cell-surface antigens. Detrimental effects of EGFP expression were not observed: fluorescence intensity appeared to be stable and hematopoietic cell growth was not impaired. The data show the feasibility of using EGFP as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in hematopoietic cells, to select for the genetically modified cells, and to track these cells and their progeny both in vitro and in vivo.


Reproduction ◽  
2006 ◽  
Vol 131 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Augusta Zannoni ◽  
Marcella Spinaci ◽  
Chiara Bernardini ◽  
Maria Laura Bacci ◽  
Eraldo Seren ◽  
...  

Several reliable methods to produce transgenic animals utilize the male genome. After penetration into oocyte, sperm DNA undergoes dramatic conformational changes that could represent a great opportunity for exogenous DNA to be integrated in the zygote genome. Among the enzymes responsible for sperm remodeling, a nuclease could be involved. The presence of a DNase I in oocytes has not been much investigated. To date, an immunolocalization of DNase I has been reported only in rat immature oocytes and the presence of nuclease activities has been shown in avian oocytes. The present study was conducted to verify whether a DNase-I like activity is present in MII mature pig oocytes. To do this, oocyte extracts were assessed for nuclease activity by a plasmid degradation assay and by zymography; these analyses evidenced a 33 kDa, Ca2+/Mg2+ dependent DNase I-like activity that was inhibited by Zn2+. A further identification of DNase I was achieved by Western blot, immunofluorescence and RT-PCR experiments. Moreover, the presence of the enzyme activity was confirmed by the rapid degradation of exogenous DNA microinjected into the ooplasm. Finally, the exogenous DNA transferred to oocyte by spermatozoa during sperm mediated gene transfer in vitro fertilisation protocol seemed to be protected from DNase I degradation and to persist in the ooplasm till 6 h. These results, together with the high efficiency of sperm based transgenesis methods, suggest that the association with spermatozoa protects exogenous DNA from nuclease activities.


2010 ◽  
Vol 22 (1) ◽  
pp. 307
Author(s):  
M. M. Souza ◽  
N. Z. Saraiva ◽  
C. S. Oliveira ◽  
T. A. D. Tetzner-Nanzeri ◽  
R. Vantini ◽  
...  

The use of fetal bovine serum (FBS) as protein supplementation in IVP of bovine embryos has presented difficulties because it can introduce a number of pathogenic components in culture systems, can be related to the birth of calf with abnormal growth and development, and precludes the establishment of the actual nutritional needs of the embryo, because it contains an unlimited variety of substances. This study evaluated the replacement of the FBS in the medium of in vitro culture (IVC) of bovine embryos, using the knockout serum replacer (KSR) as protein supplementation and culture medium conditioned with stem cells. Therefore, bovine oocytes from ovaries of slaughterhouse were selected and matured in vitro in TCM-199 medium supplemented with 10% FBS (Crypion), 1.0 μg mL-1 FSH (Pluset®, Calier, Barcelona, Spain), 50 μg mL-1 hCG (Profasi®, Serono, Geneva, Switzerland), 1.0 μg mL-1 estradiol (Sigma E-2758, Sigma Chemical, St. Louis, MO, USA), 0.2 mM sodium pyruvate, and 83.4 μg mL-1 amikacin for 24 h. After that, 1144 oocytes were fertilized in IVF-TALP medium containing 6 mg mL-1 of BSA. After 18 to 22 h, the zygotes were cultured in SOF + 5% FBS (group 2); SOF + 5% KSR (group 3); SOF (5% FBS) + 10% SOF (5% FBS) conditioned by stem cells (group 4); or SOF (5% KSR) + 10% SOF (5% KSR) conditioned by stem cells (group 5), in an atmosphere of 5% O2 at 38.5°C for 8 days. A control group outside the controlled atmosphere was added, supplemented with 5% FBS (group 1). The SOF medium supplemented with 5% FBS or KSR was conditioned by stem cells and added to SOF medium for the culture of embryo at a concentration of 10%. The rates of cleavage and production of blastocysts were assessed 48 hours and 7 days after IVF, respectively, and analyzed by chi-square test, with a significance level of 5% in the statistical program Minitab® (release 14.1, Minitab, State College, PA, USA). On the eighth day, the TUNEL test for determination of the percentage of apoptosis and the differential staining technique for determination of inner cell mass (ICM) and trophoblast (TF) were performed. The results were submitted to ANOVA, followed by comparing the means by Tukey’s test using the program GraphPad Prism (GraphPad, San Diego, CA, USA). The treatments did not differ in the production of embryos, being similar to the control group: G1 = 31.75% (74/233), G2 = 35.26% (79/224), G3 = 32.70% (74/226), G4 = 28.76% (63/219), and G5 = 26.85% (65/242). With regard to the assessment of embryonic quality, the treatments showed similar results to the control groups. No differences were observed among groups both in color and ICM/TF ratio (G1 = 0.60, G2 = 0.62, G3 =0.65, G4 = 0.60, and G5 = 0.60). Furthermore, the TUNEL showed no significant difference in the percentage of apoptosis among groups (G1 = 7.10%, G2 = 3.76%, G3 = 5.58%, G4 = 4.50%, and G5 = 4.11%). The data obtained so far indicate that it is possible to produce embryos in vitro by replacing the FBS in the culture, achieving results similar to those obtained with serum. Financial support: FAPESP 2007/58506-6.


2014 ◽  
Vol 26 (1) ◽  
pp. 155
Author(s):  
L. Baldoceda ◽  
C. Vigneault ◽  
P. Blondin ◽  
C. Robert

Mitochondria play an important role during early mammalian embryo development through their diverse cellular functions, in particular creating balance between production of ATP by electron transport chain and oxidative stress. Embryonic mitochondria are inherited maternally and independently of the nuclear genome. They show limited activity during the early developmental stages before embryonic genome activation. It has been shown that in vitro culture (IVC) has an adverse effect on mitochondrial function in embryos. So far several attempts have been performed to improve and rescue the impaired mitochondria. It has been shown that vitamin K2 (a membrane-bound electron carrier, similar to ubiquinone) was used to rescue mitochondrial dysfunction and resulted in more efficient ATP production in eukaryotic cells (Vos et al. 2012 Science 336, 1306–1310). Therefore, the aim of the present study was to investigate the effects of supplementation of vitamin K2 on mitochondrial activity and blastocyst rate. Cumulus–oocytes complexes (n = 687) recovered from slaughtered animals, were matured and fertilized in vitro according to our standard procedures. After fertilization, zygotes were cultured in SOF media supplemented with 10 mg mL–1 BSA. At 96 h post-fertilization, vitamin K2 was added to the culture media (n = 448 oocytes). On Day 7, treatment embryos were compared with untreated controls (n = 239 oocytes). In vitro culture was carried out at 38.5°C under 5% CO2, 7% O2, and 88% N2. Differences among groups in blastocyst yield were analysed by ANOVA. Mitochondrial activity data was analysed by unpaired 2-tailed t-tests. Results show that the vitamin K2-treated group had a significantly (P < 0.05) higher blastocyst rate (+8.6%), expanded blastocyst rate (+7.8%), as well as better morphological quality compared with the control group. Furthermore, to evaluate mitochondria activity, pools of embryos of each treatment were labelled with a specific dye for active mitochondria (Mitotracker Red). A significantly higher intensity of Mitotracker Red (P < 0.05) was observed in the vitamin K2 treatment versus control group, as measured by fluorescent microscopy. In conclusion, for the first time, our data prove that supplementation of vitamin K2 during IVC of bovine embryos increases blastocyst rates and embryo quality. Future studies will focus on gene expression to identify targets implicated in impaired mitochondrial activity in in vitro bovine embryo production.


Sign in / Sign up

Export Citation Format

Share Document