18 DEVELOPMENTAL COMPETENCE OF CLONED PORCINE EMBRYOS PRODUCED WITH DIFFERENT CLONING PROCEDURES

2014 ◽  
Vol 26 (1) ◽  
pp. 123
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
P. Hassel ◽  
...  

Two nuclear transfer (NT) techniques are routinely used to produce cloned animals, traditional cloning (TC) and handmade cloning (HMC). The TC embryos keep their zona and can be transferred at early stages, whereas HMC embryos are zona-free and must be cultured to the morula/blastocyst stage before transfer. Some studies have shown that in vitro culture reduces embryo development and quality, but it is not known whether embryos produced by TC or HMC differ because of the NT method or the in vitro culture. Therefore, we investigated the developmental competence and histone acetylation (H3K18ac) of porcine NT embryos produced by TC and HMC with (Day 5 and 6) or without (Day 0) in vitro culture. Nuclear transfer experiments were performed on same day (Day 0), using same batch of porcine oocytes and donor cells and same in vitro culture conditions. Cloning procedures were previously described (TC : Cloning Stem Cells 10 : 355; HMC : Zygote 20 : 61). Parthenogenetically activated embryos (PA) were used as control of activation and culture conditions. Embryos from all groups were collected for immunostaining of H3K18ac on Days 0, 5, and 6. The normalized H3K18ac level was calculated as previously described (Epigenetics 6 : 177). Cell numbers per blastocyst in each group were counted on Days 5 and 6. The cleavage rate (Day 2) and blastocyst rates (Days 5 and 6) between groups were analysed by Chi-squared test, whereas cell number per blastocysts and H3K18ac level between groups and days were analysed by ANOVA (SAS version 9.2; SAS Institute Inc., Cary, NC, USA). Cleavage rate of HMC embryos was lower than that of TC embryos, but blastocyst rate and cell number per blastocyst were higher in the HMC group compared with TC (Table 1). Differences of H3K18ac level between HMC, TC, and PA groups were only observed on Day 6 but not on Day 0 or Day 5. Within HMC and TC groups, there was no difference in H3K18ac level between Day 0 and Day 5, but the level was lower on Day 6 compared with Day 5 in the HMC group, whereas the TC group displayed the opposite pattern. In conclusion, NT embryos produced by HMC show higher blastocyst rate and cell number per blastocyst compared with TC embryos. Both in vitro culture and the NT method result in differences of the normalized H3K18ac levels. Further study is needed to investigate putative differences between NT embryos produced by HMC and TC compared to in vivo embryos also after transfer to recipients. Table 1.Cleavage and blastocyst rate, cell numbers, and normalized H3K18ac level for handmade cloning (HMC), traditional cloning (TC), and parthenogenetically activated (PA) embryos1

2010 ◽  
Vol 22 (1) ◽  
pp. 234 ◽  
Author(s):  
J. Li ◽  
G. Vjata ◽  
H. Callesen

Application of an artificial stimulus to activate oocytes and induce development is essential for the successful animal cloning by nuclear transfer (Zhu et al. 2002 Biol. Reprod. 66, 635-641). The embryo’s developmental competence could be further improved with optimal in vitro culture conditions (Du et al. 2007 Theriogenology 68, 1104-1110). Cell number determination is a commonly used and simple criterion to assess developmental quality of pre-implantation stage mammalian embryos (Lagutina et al. 2007 Theriogenology 67, 90-98). Our aim of the study was to investigate porcine embryos activated and cultured in different ways using total cell numbers as the only quality measure. After 43-44 h of in vitro maturation and cumulus cell removal, zona-intact (PAZI) or zona-free oocytes (PAZF; after pronase treatment) were subjected to parthenogenetic activation (Day 0) with a single 80-μs DC pulse of 1.26 kV cm-1 or 0.86 kV cm-1 (Kragh et al. 2005 Theriogenology 64, 1536-1545), followed by a 4-h treatment with 5 μg mL-1 of cytochalasin B and 10 μg mL-1 of cycloheximide. Subsequently, the well of the well system (Vajta in vitro 2000 Mol. Reprod. Dev. 55, 256-264) was used for culture of all PAZF and half of the PAZI embryos (PAZF-WOW and PAZI-WOW groups, respectively), whereas the remaining PAZI embryos were cultured in groups of 25-30 (PAZI group). All cultures were performed in porcine zygote medium 3 (Yoshioka et al. 2002 Biol. Reprod. 66, 112-119). On Day 6, all these in vitro cultured embryos were fixed and stained with Hoechst 33342 and cell numbers were counted on the microscopic pictures taken using fluorescent light. Data analysis was performed using ANOVA. Four replicates were performed with a total of 462 PAZF-WOW, 484 PAZI-WOW, and 467 PAZI group embryos. Embryos of each group were then divided into 5 groups based on their cell number (<5 cells, 5-8 cells, 9-16 cells, 17-32 cells, >32 cells). Percentages of embryos in each group are shown in Table 1. The average cell numbers of zona-intact embryos from PAZI-WOW and the PAZI group were similar to each other (P > 0.05), whereas the cell numbers of PAZF-WOW embryos were significantly different from both PAZI-WOW and PAZI group embryos (P < 0.05), with more embryos having higher cell numbers.The results demonstrate that zona-free parthenogenetically activated embryos cultured in WOW have higher cell numbers than embryos with intact zona pellucida. Accordingly, the presence of zona pellucida may compromise embryo development under certain in vitro culture situations. Table 1.Distribution (in %) of parthenogenetically activated porcine embryos according to their cell number on Day 6 after activation


2006 ◽  
Vol 18 (2) ◽  
pp. 250
Author(s):  
M. G. Marques ◽  
A. B. Nascimento ◽  
V. P. Oliveira ◽  
A. R. S. Coutinho ◽  
M. E. O. A. Assumpção ◽  
...  

The present work evaluated the reversible meiosis inhibition effect on the development of swine embryos produced by in vitro fertilization (IVF) or parthenogenetic activation (PA). The efficiency of PZM3 and NCSU23 embryo culture media was also evaluated. Oocytes from ovaries collected at a slaughterhouse were subjected to IVM in two different groups: CHX (cycloheximide 5 µM for 10 h) and control, both with TCM-199 + 3.05 mM glucose + 0.91 mM sodium pyruvate + 10% porcine follicular fluid (pFF) + 0.57 mM cystein + 10 ng epidermal growth factor (EGF)/mL + 10 IU eCG/mL + 10 IU hCG/mL for the initial 22 h. In the remaining period (20 h for CHX and 22 h for control), medium without hormones was utilized. After IVM, oocytes were denuded and fertilized for 6 h (IFV) or the matured oocytes were submitted to activation by electric pulses (PA) (2 DC of 1.5 kV/cm for 30 µs), incubated for 1 h in culture medium with 10 μM of CHX, and again submitted to the same electric pulses for 60 µs. Embryo development was evaluated by cleavage rate on Day 3 and blastocyst rate and blastocyst cell number on Day 7 of culture. Cleavage and blastocyst rates were analyzed by the equality-of-two-ratios test and cell number by the Kruskal-Wallis and Mann-Whitney tests (P < 0.05). In relation to IVF, the PZM3 medium was more efficient than NCSU23 for cleavage rate in the CHX group (PZM3: 68.4%, NCSU23: 44.4%) and had a better blastocyst rate in the control group (PZM3: 13.4%, NCSU23: 5.6%). With reference to PA, NCSU23 presented better cleavage and blastocyst rates than PZM3 in the CHX group (NCSU23: 89.5%, PZM3: 78.5% and NCSU23: 20.4%, PZM3: 13.0%, respectively). In the control group, only the NCSU23 blastocyst rate was higher than that for PZM3 (NCSU23: 22.5%, PZM3: 10.8%). No culture medium effect on cell number mean of IVF and PA blastocysts was observed. Maturation block improved cleavage rates in IVF groups cultured with PZM3 (68.4% and 50.6%, respectively, for CHX and control) and in PA groups cultured with NCSU23 (89.5% and 80.3%, respectively, for CHX and control), but no improvement of blastocyst rates in both groups (IVF and PA) was verified. Table 1 below shows that maturation block decreased the IVF and increased the PA blastocyst cell numbers. As older oocytes are more effectively activated, oocytes blocked with CHX achieved the maturation stage faster than the control group, therefore resulting in high-quality PA blastocysts. In conclusion, PZM3 was more efficient for IVF embryo production in contrast to NCSU23, whereas NCSU23 can be indicated for PA embryo production. Moreover, maturation blockage with CHX influenced blastocyst cell number, decreasing in IVF embryos and increasing in PA embryos. Table 1. Mean (±SD) of blastocyst cell numbers for IVF or PA groups after in vitro maturation without (control) or with cycloheximide (CHX) and cultured in NCSU23 or PZM3 medium This work was supported by FAPESP 02/10747–1.


2015 ◽  
Vol 27 (1) ◽  
pp. 107
Author(s):  
R. Koppang ◽  
N. R. Mtango ◽  
M. Barcelo-Fimbres ◽  
J. P. Verstegen

Porcine somatic cell nuclear transfer (SCNT) is limited to the same or next day surgical embryo transfer due to poor culture conditions in vitro. In this study, we aimed to overcome this problem by treating SCNT embryos with scriptaid, an inhibitor of histone deacetylase (HDACi) that helps with epigenetic reprogramming of the somatic nuclei. Scriptaid was chosen over other HDACi because it has been shown to improve histone acetylation in the same pattern as that of IVF embryos as well as its low toxicity characteristic (Zhao et al. 2009 Biol. Reprod. 81, 525–530; Zhao et al. 2010 Cell Reprogram. 12, 75–78). An inbred miniature pig fetal fibroblast cell line that is known to give low blastocyst rate in culture was used as a source of donor cells transferred into enucleated oocytes. Traditional SCNT was performed; embryos were fused and chemically activated in 10 µM ionomycin for 5 min and 2 mM DMAP for 3 to 4 h before being transferred into scriptaid. Embryos were treated with 500 nM scriptaid (Zhao et al. 2010) for 18 h and the untreated group was used as control. A total of 806 oocytes were used in 8 replicates. The constructed embryos were cultured in modified porcine zygote medium 5 (mPZM-5) for 7 days at 39°C in 5% O2, 5% CO2, 90% N2 atmosphere. Cleavage rates were assessed at 2.5 days and blastocyst rates at Day 7 after activation. Data were analysed by ANOVA using GLM, and percentages were transformed using arcsin square root using Statistix 10 software (Tallahassee, FL, USA). There were no differences in cleavage rates for control group v. scriptaid (55.3 v. 49.9%; P > 0.1; Table 1). The blastocyst rate per construct showed remarkable increase in the scriptaid treated group compared with the control group (12.8 v. 2.2%; P < 0.01; Table 1). Similarly, a significant effect was observed for blastocyst per embryos cleaved where scriptaid had higher rates compared with control (25.8 v. 5.8%; P < 0.01). These results indicated that improving nuclear reprogramming of miniature porcine SCNT clones by scriptaid treatment enhanced blastocyst production during the in vitro culture of porcine embryos. Table 1.Mean (± s.e.m.) measures of embryonic development of SCNT embryos


2010 ◽  
Vol 22 (1) ◽  
pp. 332 ◽  
Author(s):  
I. Molina ◽  
M. Muñoz ◽  
C. Díez ◽  
E. Gómez ◽  
E. A. Martínez ◽  
...  

The meiotic spindle in the oocyte is composed of microtubules and plays an important role during chromosome alignment and separation at meiosis. Polarized light microscopy (PLM) is used as a tool in human and, recently, in farm animals assisted reproductive technologies. PLM could be useful for a non-invasive evaluation of the meiotic spindle. The objectives of the present study were to assess the efficiency of PLM to detect microtubule-polymerized protein within in vitro-matured porcine oocytes and to examine the effects of PLM on the oocyte developmental competence. Cumulus-oocyte complexes from slaughterhouse ovaries were matured in vitro for 42 h as described by Gil et al. (2004 Theriogenology 62, 544-552). In the first experiment, a total of 97 oocytes from 6 replicates were placed individually in 10-μL drops of TCM-199-Hepes-FCS in a glass Petri dish. PLM was used to detect the presence of polymerized protein which could be forming a meiotic spindle. The presence of polymerized protein and a meiotic spindle was confirmed in individual oocytes by inmunostaining and chromatin detection as described by Morató et al. (2008 Mol. Reprod. Dev. 75, 191-201). In the second experiment, a total of 160 oocytes from 4 replicates were exposed or not (controls) to PLM for 10 minutes. Thereafter, the oocytes were parthenogenetically activated and cultured in vitro. Cleavage rate, total blastocyst rate, expanded blastocyst rate on Day 7 and total cell numbers in expanded blastocysts were assessed. Data were analyzed by GLM procedure of SAS. There was a positive correlation (r = 1; P < 0.0001) between the signal obtained by PLM and the presence of microtubule-polymerized protein as confirmed by inmunostaining. A positive PLM signal was detected in 98.9% of the oocytes. A barrel-shape spindle was observed in 94.8% of the individual samples by inmunostaining and all of these oocytes were positive to PLM. Moreover, oocytes exposed to PLM did not differ significantly from controls on cleavage rate (83.7 ± 1.5 v. 84.4 ± 1.5), total blastocyst rate (36.9 ± 3.6 v. 41.2 ± 3.6) and expanded blastocyst rate on Day 7 (21.9 ± 1.7 v. 26.2 ± 1.7), respectively. There were also no differences in total cell numbers counted in expanded blastocysts (32.8 ± 2.6 v. 35.6 ± 2.5). These results indicate that polarized light microscopy did not exert detrimental effects on porcine oocyte developmental competence and it seems an efficient system to detect polymerized protein in in vitro-matured porcine oocytes. Grant support: INIA: RZ2007-00013-00-00. I. Molina, M. Muñoz, B. Trigal and D. Martín are sponsored by INIA, RYC08-03454, Cajastur and PTA2007-0268-I, respectively.


2011 ◽  
Vol 23 (1) ◽  
pp. 130
Author(s):  
J. Li ◽  
J. Adamsen ◽  
R. Li ◽  
H. Pedersen ◽  
Y. Liu ◽  
...  

One of the primary factors influencing the developmental ability of cloned embryos is the oocyte′s diameter (Hirao et al. 1994 J. Reprod. Fertil. 100, 333–339). However, the oocyte donor's age (i.e. its sexual maturity) is also important to consider, because a high proportion of immature oocytes can be expected (Ikeda and Takahashi 2003 Reprod. Fertil. Dev. 15, 215–221). The present study was to investigate the effect of diameter of oocytes collected from prepubertal gilts weighing 100 to 120 kg on the developmental ability of cloned and parthenogenetically activated (PA) embryos. Cumulus–oocyte complexes collected from ovaries of prepubertal gilts were in vitro matured for 42 to 44 h as described for sow oocytes (Li et al. 2008 Theriog 70, 800–808). After removal of the cumulus cells, the matured oocytes were sorted into 2 groups based on visual inspection: large (L) and small (S) oocytes, whereas non-sorted oocytes were used as control (C). In addition, 1 batch from each of the 3 groups of oocytes had their mean size measured. Subsequently, all 3 groups were used for handmade cloning (HMC; Li et al. 2009 Reprod. Domest. Anim. 44, 122–127) or parthenogenetic activation (PA; Kragh et al. 2005 Theriogenology 64, 1536–1545). Then a chemical activation with 5 μg mL–1 cytochalasin B and 10 μg mL–1 cycloheximide in PZM-3 medium was applied for 4 h on both HMC and PA embryos. Finally, the activated embryos were washed and cultured in PZM-3 medium using the WOW system. The embryo development was evaluated by cleavage rate (Day 2), blastocyst rate (Day 6), and total cell number in blastocysts. Data were analysed by ANOVA with single factor in Excel (Microsoft Excel 2007, Redmond, WA, USA). The results showed (Table 1) that by simple visual observation, oocytes could be easily sorted into the following groups: L group (mean diameter 110 μm, from 105 to 116 μm), S group (mean diameter 101 μm, from 93 to 106 μm) and C group (mean diameter 107 μm, from 93 to 116 μm). Cleavage rates and total cell number were similar in the 3 groups. However, the blastocyst rate in L group either for HMC or PA was higher than S group. The data confirm that prepubertal gilt oocytes are useful for cloning and PA, but developmental rates can be increased by selection of large oocytes by simple visual observation. Table 1.Data analysis results


2009 ◽  
Vol 21 (1) ◽  
pp. 224
Author(s):  
M. M. Pereira ◽  
F. Q. Costa ◽  
P. H. A. Campos ◽  
R. V. Serapiao ◽  
J. Polisseni ◽  
...  

In vitro maturation (IVM) is a critical step in in vitro bovine embryo production. A number of factors can influence the IVM environment, such as media composition and protein supplementation. Serum and higher O2 tension have been shown to reduce embryo quality; however, little is known about the effects of serum and O2 tension during IVM on embryo quality and development. This study aimed to evaluate the effect of serum and O2 tension on IVM of bovine oocytes. Immature oocytes obtained from slaughterhouse ovaries were randomly distributed in 4 groups of IVM: G1 (n = 253), 0.1% polyvinyl alcohol (PVA) in air; G2 (n = 248), 10% inactivated estrous cow serum (ECS) in air; G3 (n = 270), 0.1% PVA under 5% O2; and G4 (n = 236), 10% ECS under 5% O2. In vitro maturation was performed with TCM-199 culture medium supplemented with 20 μg mL–1 FSH, under 5% CO2 at 38.5°C for 24 h. After maturation, oocytes were in vitro fertilized with 2.0 × 106 sperm mL–1 in Fert TALP medium, supplemented with heparin, for 20 h. Presumptive zygotes were denuded by vortexing and cultured in CR2aa medium with 2.5% fetal calf serum under 5% CO2 and 5% O2 at 38.5°C. Cleavage rate was evaluated 72 h postfertilization, and blastocyst rate and total cell number were evaluated 8 days postfertilization. Morphological classification of embryos was performed at Day 8 according to the International Embryo Transfer Society manual (1998). Cleavage, blastocyst, and grade 1 embryo rates were analyzed by chi-square, and total cell number was analyzed by ANOVA, with means compared by LSD. Results are presented as mean ± SEM. There was no difference (P > 0.05) in cleavage rates among G1, G2, and G4 (61.6, 65.3, and 57.6%, respectively), but cleavage rate was lower (P < 0.05) in G3 (52.5%). Blastocyst rates among G1, G3, and G4 (15.8, 17.7, and 20.3%, respectively) were similar (P > 0.05). However, blastocyst rate in G2 (25.0%) was higher (P < 0.05) than in G1 and G3, but was similar to G4 (P > 0.05). Total cell number was similar (P > 0.05) among G2 (194.1 ± 13.1), G3 (173.3 ± 9.0), and G4 (163.8 ± 8.7), but was lower (P < 0.05) in G1 (124.5 ± 11.4). The grade 1 embryo rate was lower (P < 0.05) in G1 (70.3%) than in G2 (89.5%), but was similar (P > 0.05) to G3 (77.0%) and G4 (83.9%). The results suggest that IVM with PVA in TCM-199 medium under 5% O2 can be performed without reducing embryo development and quality, when compared with ECS. On the other hand, oocyte developmental competence seems to be affected when IVM is performed with PVA under air conditions. Financial support: CNPq, FAPEMIG.


2018 ◽  
Vol 30 (1) ◽  
pp. 175
Author(s):  
G. A. Kim ◽  
J.-X. Jin ◽  
S. Lee ◽  
A. Taweechaipaisankul ◽  
B. C. Lee

Melatonin and its metabolites are powerful antioxidants and free radical scavengers. Because porcine embryos are vulnerable to oxidative stress in vitro, the addition of various protective chemicals to the culture medium, including melatonin, has been explored. The aim of this study was to investigate the effect of melatonin on in vitro developmental competence of porcine parthenogenetically activated (PA) embryos. Immature cumulus–oocyte complexes (COC) were collected and cultured in medium comprising TCM-199 supplemented with 10 ng mL−1 epidermal growth factor, 0.57 mM cysteine, 0.91 mM sodium pyruvate, 5 μL mL−1 insulin, transferrin selenium solution 100×, 10% porcine follicular fluid, 10 IU mL−1 eCG, and 10 IU mL−1 hCG for 44 h. Then, COC were denuded and PA with electrical stimulation, and PA embryos were cultured in porcine zygote medium 5 (PZM-5) supplemented with melatonin at increased concentrations (10−9, 10−7, 10−5 M) at 39°C in a humidified atmosphere of 5% O2, 5% CO2, and 90% N2 for 7 days. Subsequent embryo development, including cleavage rate, blastocyst rate, and blastocyst cell numbers, was compared between groups (mean no. of embryos; control, 27.14; 10−9 M, 28.86; 10−7 M, 27.71; 10−5 M, 26.43). The experiments were repeated 7 times for each treatment group. Statistical analyses of all data were performed using one-way ANOVA with Dunn’s multiple comparison test. Results are expressed as the mean ± SEM and all differences were considered significant at P < 0.05. No apparent effect on cleavage rate of melatonin treatment of various concentrations was noted. Blastocyst cell number did not show any significant difference between groups. However, the potential of PA oocytes to develop into blastocysts was significantly higher in the group supplemented with 10−9 M melatonin compared with the control group (35.44 ± 3.84 v. 24.71 ± 1.59) and other melatonin treated groups (10−5 M, 21.35 ± 2.82; 10−7 M, 24.01 ± 2.31; P < 0.05). These indicated that treatment with 10−9 M melatonin in embryo culture might reduce the oxidative stress properly compared with other concentrations, which results in improvement of blastocyst rate formation. In conclusion, treatment with 10−9 M melatonin positively promoted the blastocyst formation rate of porcine PA embryos with no beneficial effects on their blastocyst cell numbers or cleavage rate. This study was supported by the National Research Foundation (#2015R1C1A2A01054373; 2016M3A9B6903410), Research Institute for Veterinary Science and the BK21 PLUS Program.


2009 ◽  
Vol 21 (2) ◽  
pp. 338 ◽  
Author(s):  
Lin Lin ◽  
Peter M. Kragh ◽  
Stig Purup ◽  
Masashige Kuwayama ◽  
Yutao Du ◽  
...  

Exposure of porcine oocytes to increased concentrations of NaCl prior to manipulation has been reported not only to increase cryotolerance after vitrification, but also to improve developmental competence after somatic cell nuclear transfer (SCNT). In the present study we compared the effects of NaCl with those of concentrated solutions of two non-permeable osmotic agents, namely sucrose and trehalose, on the cryotolerance and developmental competence of porcine oocytes. In Experiment 1, porcine in vitro-matured cumulus–oocyte complexes (COCs; n = 1200) were exposed to 588 mOsmol NaCl, sucrose or trehalose solutions for 1 h, allowed to recover for a further 1 h, vitrified, warmed and subjected to parthenogenetic activation. Both Day 2 (where Day 0 is the day of activation) cleavage and Day 7 blastocyst rates were significantly increased after NaCl, sucrose and trehalose osmotic treatments compared with untreated controls (cleavage: 46 ± 5%, 44 ± 7%, 45 ± 4% and 26 ± 6%, respectively; expanded blastocyst rate: 6 ± 1%, 6 ± 2%, 7 ± 2% and 1 ± 1%, respectively). In Experiment 2, COCs (n = 2000) were treated with 588 mOsmol NaCl, sucrose or trehalose, then used as recipients for SCNT (Day 0). Cleavage rates on Day 1 did not differ between the NaCl-, sucrose-, trehalose-treated and the untreated control groups (92 ± 3%, 95 ± 3%, 92 ± 2% and 94 ± 2%, respectively), but blastocyst rates on Day 6 were higher in all treated groups compared with control (64 ± 2%, 69 ± 5%, 65 ± 3% and 47 ± 4%, respectively). Cell numbers of Day 6 blastocysts were higher in the control and NaCl-treated groups compared with the sucrose- and trehalose-treated groups. In conclusion, treatment of porcine oocytes with osmotic stress improved developmental competence after vitrification combined with parthenogenetic activation, as well as after SCNT.


2005 ◽  
Vol 17 (2) ◽  
pp. 181 ◽  
Author(s):  
D. Sage ◽  
P. Hassel ◽  
B. Petersen ◽  
W. Mysegades ◽  
P. Westermann ◽  
...  

Porcine nuclear transfer (NT) is an inefficient process and it is necessary to use as many as 120 NT embryos for each foster mother to obtain small litters of live piglets. In these experiments, we evaluated the effects of culture atmosphere and medium on the development of NT embryos by monitoring blastocyst rate and cell number of Day 6 blastocysts. Age matched IVF and parthenogenetic embryos were also evaluated for comparison. For all experiments a pool of oocytes was aspirated from ovaries collected in a local abattoir. Following aspiration, oocytes were allowed to mature for 40 h in North Carolina State University (NCSU)-37 medium (supplemented with cAMP and hCG/eCG for the first 22 h). After removal of the cumulus cells, denuded oocytes with polar bodies were selected for NT, enucleated, fused with fetal fibroblasts, and sequentially activated electrically and chemically by 3 h of treatment with 6-dimethylaminopurine (6-DMAP). A second group of oocytes from the same denuded pool were maintained in TL-HEPES medium and activated in parallel with the NT group to produce parthenogenetic embryos. A third group was fertilized with frozen-thawed epididymal semen and co-cultured for ∼12 h to give IVF embryos. All three treatment groups were subdivided into a control subgroup and an experimental subgroup. In the first experiment, we compared the effects of atmosphere (20% vs. 5% oxygen) on in vitro embryonic development in NCSU-23 medium. In the second experiment, we used only the 5% oxygen concentration and compared different culture media. One subgroup was maintained in standard NCSU-23 medium and the second subgroup was cultured in a two-step system for the first 58 h in modified NCSU-23 (without glucose but supplemented with 2.0 mM lactate and 0.2 mM pyruvate), followed by addition of glucose to give a final concentration of 5.55 mM. Data were statistically analyzed by analysis of variance and chi square test. Blastocyst rate and mean cell number in all three embryo groups were improved under 5% oxygen. The most dramatic effect was observed in the NT group, in which the blastocyst rate increased significantly (P < 0.001) from 6.7% ± 5.9 (n = 279) to 19.6% ± 8.9 (n = 250) and mean cell number increased from 17.7 ± 12.1 to 25.8 ± 10.3 cells per blastocyst. With 5% oxygen there was also an increase of blastocyst rates and mean cell numbers in both IVF and parthenogenetic groups. In the second experiment, blastocyst rate for NT embryos increased significantly (P < 0.05) from 21.8% ± 7.6 (n = 242) in conventional NCSU-23 to 31.5% ± 11.0 (n = 271) in the modified system whereas there was almost no difference in the mean cell number of both groups (29.2 ± 4.3 vs. 31.5 ± 5.3). In the groups of IVF and parthenogenetic embryos no difference was found. These results indicate that both the reduced oxygen and the modified culture medium are important for pre-implantation development of porcine nuclear transfer embryos.


2016 ◽  
Vol 28 (2) ◽  
pp. 137
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
D. Hermann ◽  
...  

Conventional “Dolly”-based cloned (CNT) embryos maintain zona pellucida and can be transferred early in development. Handmade cloned (HMC) embryos are zona free and are cultured to later stages for transfer. We have shown differences between HMC and CNT embryos (Rep. Fert. Dev. 26, 123), and both in vitro culture and cloning method (NT) are associated with alterations in histone acetylation. More studies are needed to clarify whether CNT and HMC embryos differ in epigenetic profiles due to NT method or culture condition. Here we investigated histone acetylation profile of NT embryos produced by CNT or HMC with or without 5 to 6 days in vitro culture, emphasising quality and gene expression in resulting embryos. Both NT methods were performed on Day 0 (D0) with same oocyte batch, donor cells, and culture medium (CNT in group, HMC in well of well). On D0, 5, and 6 after CNT (Clon. Stem Cells 10, 355) or HMC (Zygote 20, 61), all developed embryos of all morphological qualities were collected for immunostaining of H3K18ac, and on D0 and 6 for mRNA expression of the genes KAT2A/2B, EP300, HDAC1/2, DNMT1o/s, and GAPDH. Embryo quality was evaluated normal (clear inner cell mass, high cell number, no fragments) or bad (no clear inner cell mass, low cell number, fragments). Cell numbers per blastocyst were counted on D5 and 6. Differences in cell number and H3K18ac level between different groups and days were analysed by ANOVA; gene expression data were analysed by GLM (SAS version 9.3, SAS Institute Inc., Cary, NC, USA). Embryo development rates of both NT methods were reported previously (Rep. Fert. Dev. 26, 123). On D5 and 6, all HMC embryos were evaluated as normal, but the CNT group contained both normal and bad embryos. Regarding cell numbers (Table 1), on D5 there was no difference between normal CNT and HMC embryos, but numbers were lower in CNT bad embryos. On D6 the blastocyst cell number was lower in both normal and bad CNT embryos compared with HMC. Regarding H3K18ac levels (Table 1), no differences were found on D5 between normal CNT and HMC embryos, but on D6 both CNT normal and bad embryos had higher H3K18ac level compared with HMC. On D0, no difference was found in mRNA expression of all 8 genes. On D6, KAT2A expression was slight increased (1.8-fold) in CNT compared with HMC embryos (P < 0.05). In conclusion, no differences were found between CNT and HMC embryos after completed NT procedure (D0) or after 5 days in vitro culture. However, differences in quality (cell number and H3K18ac) and gene expression between the 2 NT methods were observed when blastocyst expansion was initiated (D6). Thus, the 2 NT methods seem to produce embryos of similar quality, which is maintained over 5 days in vitro culture, but thereafter gene expression and histone acetylation are more active in CNT embryos. Table 1.Cell number and H3K18ac level1


Sign in / Sign up

Export Citation Format

Share Document