Long-term storage of tissues by cryopreservation: critical issues

Biomaterials ◽  
1996 ◽  
Vol 17 (3) ◽  
pp. 243-256 ◽  
Author(s):  
Jens O.M. Karlsson ◽  
Mehmet Toner
2021 ◽  
Vol 9 ◽  
Author(s):  
Renato Baciocchi ◽  
Giulia Costa

Accelerated carbonation is a carbon utilization option which allows the manufacturing of useful products, employing CO2-concentrated or -diluted emission sources and waste streams such as industrial or other processing solid residues, in a circular economy perspective. If properly implemented, it may reduce the exploitation of virgin raw materials and their associated environmental footprint and permanently store CO2 in the form of Ca and/or Mg carbonates, thus effectively contributing to climate change mitigation. In this perspective article, we first report an overview of the main mineral carbonation pathways that have been developed up to now, focusing on those which were specifically designed to obtain useful products, starting from different alkaline feedstocks. Based on the current state of the art, we then discuss the main critical issues that still need to be addressed in order to improve the overall feasibility of mineral carbonation as a CCUS option, as well as research needs and opportunities.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

2020 ◽  
Vol 59 (SL) ◽  
pp. SLLC01 ◽  
Author(s):  
Tomoki Murota ◽  
Toshiki Mimura ◽  
Ploybussara Gomasang ◽  
Shinji Yokogawa ◽  
Kazuyoshi Ueno

Author(s):  
O. Semenenko ◽  
O. Vodchyts ◽  
V. Koverga ◽  
R. Lukash ◽  
O. Lutsenko

The introduction and active use of information transmission and storage systems in the Ministry of Defense (MoD) of Ukraine form the need to develop ways of guaranteed removal of data from media after their use or long-term storage. Such a task is an essential component of the functioning of any information security system. The article analyzes the problems of guaranteed destruction of information on magnetic media. An overview of approaches to the guaranteed destruction of information on magnetic media of different types is presented, and partial estimates of the effectiveness of their application are given by some generally accepted indicators of performance evaluation. The article also describes the classification of methods of destruction of information depending on the influence on its medium. The results of the analysis revealed the main problems of application of software methods and methods of demagnetization of the information carrier. The issue of guaranteed destruction of information from modern SSD devices, which are actively used in the formation of new systems of information accumulation and processing, became particularly relevant in the article. In today's conditions of development of the Armed Forces of Ukraine, methods of mechanical and thermal destruction are more commonly used today. In the medium term, the vector of the use of information elimination methods will change towards the methods of physical impact by the pulsed magnetic field and the software methods that allow to store the information storage device, but this today requires specialists to develop new ways of protecting information in order to avoid its leakage.


Sign in / Sign up

Export Citation Format

Share Document