Mantle plume separation and the expanding earth

1977 ◽  
Vol 24 (4) ◽  
pp. 216
Keyword(s):  
2019 ◽  
Vol 486 (4) ◽  
pp. 460-465
Author(s):  
E. V. Sharkov ◽  
A. V. Chistyakov ◽  
M. M. Bogina ◽  
O. A. Bogatikov ◽  
V. V. Shchiptsov ◽  
...  

Tiksheozero ultramafic-alkaline-carbonatite intrusive complex, like numerous carbonatite-bearing complexes of similar composition, is a part of large igneous province, related to the ascent of thermochemical mantle plume. Our geochemical and isotopic data evidence that ultramafites and alkaline rocks are joined by fractional crystallization, whereas carbonatitic magmas has independent origin. We suggest that origin of parental magmas of the Tiksheozero complex, as well as other ultramafic-alkaline-carbonatite complexes, was provided by two-stage melting of the mantle-plume head: 1) adiabatic melting of its inner part, which produced moderately-alkaline picrites, which fractional crystallization led to appearance of alkaline magmas, and 2) incongruent melting of the upper cooled margin of the plume head under the influence of CO2-rich fluids  that arrived from underlying zone of adiabatic melting gave rise to carbonatite magmas.


Lithos ◽  
2018 ◽  
Vol 308-309 ◽  
pp. 364-380 ◽  
Author(s):  
Hossein Azizi ◽  
Federico Lucci ◽  
Robert J. Stern ◽  
Shima Hasannejad ◽  
Yoshihiro Asahara

1995 ◽  
Vol 36 (1) ◽  
pp. 189-229 ◽  
Author(s):  
S. A. GIBSON ◽  
R. N. THOMPSON ◽  
O. H. LEONARDOS ◽  
A. P. DICKIN ◽  
J. G. MITCHELL

2021 ◽  
Author(s):  
J. Gregory Shellnutt ◽  
Jaroslav Dostal ◽  
Tung-Yi Lee

Abstract The Triassic volcanic rocks of Wrangellia erupted at an equatorial to tropical latitude that was within 3000 km of western North America. The mafic and ultramafic volcanic rocks are compositionally and isotopically similar to those of oceanic plateaux that were generated from a Pacific mantle plume-type source. The thermal conditions, estimated from the primitive rocks, indicate that it was a high temperature regime (T P > 1550°C) consistent with elevated temperatures expected for a mantle plume. The only active hotspot currently located near the equator of the eastern Pacific Ocean that was active during the Mesozoic and produced ultramafic volcanic rocks is the Galápagos hotspot. The calculated mantle potential temperatures, trace elemental ratios, and Sr-Nd-Pb isotopes of the Wrangellia volcanic rocks are within the range of those from the Caribbean Plateau and Galápagos Islands, and collectively have similar internal variability as the Hawaii-Emperor island chain. The paleogeographic constraints, thermal estimates, and geochemistry suggests that it is possible that the Galápagos hotspot generated the volcanic rocks of Wrangellia and the Caribbean plateau or, more broadly, that the eastern Pacific (Panthalassa) Ocean was a unique region where anomalously high thermal conditions either periodically or continually existed from ~230 Ma to the present day.


Sign in / Sign up

Export Citation Format

Share Document