Interpretation of seismic data from hydraulic fracturing experiments at the Fenton Hill, New Mexico, hot dry rock geothermal site

1982 ◽  
Vol 87 (B2) ◽  
pp. 936-944 ◽  
Author(s):  
Keiiti Aki ◽  
Michael Fehler ◽  
R. L. Aamodt ◽  
J. N. Albright ◽  
R. M. Potter ◽  
...  

1977 ◽  
Vol 17 (04) ◽  
pp. 317-326 ◽  
Author(s):  
H.D. Murphy ◽  
R.G. Lawton ◽  
J.W. Tester ◽  
R.M. Potter ◽  
D.W. Brown ◽  
...  

Abstract Two 3-km-deep boreholes were drilled into hot granite in northern New Mexico to extract geothermal energy from hot, dry rock. Both boreholes were hydraulically fractured to establish a flow connection. Fracture-to-borehole intersection locations and in-situ thermal conductivity were determined from flowing temperature logs. In-situ measurements of rock permeability and compressibility show a strong dependence on pore pressure. An estimate of the minimum horizontal earth stress was derived from fracture extension pressures and found to be one-half the overburden stress. It was found that fracture growth was remarkably simple to achieve in the low-permeability granite and that these factures appear to be "self-propped." The present connection has a large flow impedance that probably cannot be reduced to a useful level. Establishment of a prototype heat exchange system will require redrilling prototype heat exchange system will require redrilling to intersect directly one of the fractures. Introduction A program designed to demonstrate the feasibility of extracting energy from hot, dry rock has been initiated at the Los Alamos Scientific Laboratory. Basically, it is proposed that man-made geothermal energy reservoirs can be created by drilling into relatively impermeable rock to a depth where the temperature is high enough to be useful, creating a reservoir by hydraulic fracturing, and then completing the circulation loop by drilling a second hole to intersect the hydraulically fractured region, or by drilling into the immediate vicinity of the first fracture and then creating a second fracture that intersects the first one. Thermal power would be extracted from this system by injecting cold water down the first hole, forcing the water to sweep by the freshly exposed hot rock surface in the reservoir-fracture system, and then returning the hot water to the surface where the thermal energy would be converted to electrical energy or used for other purposes. System pressures would be maintained such that only one phase, liquid water, would be present in the reservoir and the drilled holes. The concept is described in more detail by Smith et al., and estimates of heat extraction rates have been reported by Harlow and Pracht and McFarland and Murphy. Briefly, it was Pracht and McFarland and Murphy. Briefly, it was found that a large fracture about 1 km in radius, in hot, 200 to 250C rock, is sufficient to provide an average of 60 MW of thermal power for 20 years. In addition, the thermal contraction associated with the cooling of the rock will result in thermal stress cracking, crating additional porosity and heat-transfer surfaces, so that hundreds of megawatts of thermal power may be provided ultimately. DRILLING AND COMPLETIONS The hot, dry rock concept is being investigated in a series of field experiments at Fenton Hill, located on the west flank of a dormant volcano, the Valles Caldera, in the Jemez mountains of northern New Mexico. In Dec. 1974, the first deep borehole, GT-2, was drilled to a depth of 2.929 km (9,609 ft) in granite, where the temperature was 197C (386F), cased to 2.917 km (9,571 ft), and then fractured in the open hole below the casing. The variation of equilibrium temperature and geology with depth is shown in Fig. 1. The Precambrian crystalline rocks were encountered at 730 m (2,400 ft). From this depth to the bottom the geothermal gradient is reasonably constant, although it is somewhat lower in the gneiss as compared with the deeper formations (44C/km vs 57C/km). The steeper gradient in the sediments above 730 m is caused by their lower thermal conductivity. Based on the conductivity measurements at 2.77 km (9,100 ft), the geothermal heat flow at this site is 0.16 W/sq m, 2 times the worldwide average. SPEJ p. 317


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. KS207-KS217 ◽  
Author(s):  
Jeremy D. Pesicek ◽  
Konrad Cieślik ◽  
Marc-André Lambert ◽  
Pedro Carrillo ◽  
Brad Birkelo

We have determined source mechanisms for nine high-quality microseismic events induced during hydraulic fracturing of the Montney Shale in Canada. Seismic data were recorded using a dense regularly spaced grid of sensors at the surface. The design and geometry of the survey are such that the recorded P-wave amplitudes essentially map the upper focal hemisphere, allowing the source mechanism to be interpreted directly from the data. Given the inherent difficulties of computing reliable moment tensors (MTs) from high-frequency microseismic data, the surface amplitude and polarity maps provide important additional confirmation of the source mechanisms. This is especially critical when interpreting non-shear source processes, which are notoriously susceptible to artifacts due to incomplete or inaccurate source modeling. We have found that most of the nine events contain significant non-double-couple (DC) components, as evident in the surface amplitude data and the resulting MT models. Furthermore, we found that source models that are constrained to be purely shear do not explain the data for most events. Thus, even though non-DC components of MTs can often be attributed to modeling artifacts, we argue that they are required by the data in some cases, and can be reliably computed and confidently interpreted under favorable conditions.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
kai lin ◽  
Bo Zhang ◽  
Jianjun Zhang ◽  
Huijing Fang ◽  
Kefeng Xi ◽  
...  

The azimuth of fractures and in-situ horizontal stress are important factors in planning horizontal wells and hydraulic fracturing for unconventional resources plays. The azimuth of natural fractures can be directly obtained by analyzing image logs. The azimuth of the maximum horizontal stress σH can be predicted by analyzing the induced fractures on image logs. The clustering of micro-seismic events can also be used to predict the azimuth of in-situ maximum horizontal stress. However, the azimuth of natural fractures and the in-situ maximum horizontal stress obtained from both image logs and micro-seismic events are limited to the wellbore locations. Wide azimuth seismic data provides an alternative way to predict the azimuth of natural fractures and maximum in-situ horizontal stress if the seismic attributes are properly calibrated with interpretations from well logs and microseismic data. To predict the azimuth of natural fractures and in-situ maximum horizontal stress, we focus our analysis on correlating the seismic attributes computed from pre-stack and post-stack seismic data with the interpreted azimuth obtained from image logs and microseismic data. The application indicates that the strike of the most positive principal curvature k1 can be used as an indicator for the azimuth of natural fractures within our study area. The azimuthal anisotropy of the dominant frequency component if offset vector title (OVT) seismic data can be used to predict the azimuth of maximum in-situ horizontal stress within our study area that is located the southern region of the Sichuan Basin, China. The predicted azimuths provide important information for the following well planning and hydraulic fracturing.


2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.


Sign in / Sign up

Export Citation Format

Share Document