Analysis of a biaxial elastic inclusion stressmeter

Author(s):  
A.T. Spathis ◽  
D. Truong
Keyword(s):  
2000 ◽  
Vol 653 ◽  
Author(s):  
Samuel Forest

AbstractThe mechanics of generalized continua provides an efficient way of introducing intrinsic length scales into continuum models of materials. A Cosserat framework is presented here to descrine the mechanical behavior of crystalline solids. The first application deals with the problem of the stress field at a crak tip in Cosserat single crystals. It is shown that the strain localization patterns developping at the crack tip differ from the classical picture : the Cosserat continuum acts as a bifurcation mode selector, whereby kink bands arising in the classical framework disappear in generalized single crystal plasticity. The problem of a Cosserat elastic inclusion embedded in an infinite matrix is then considered to show that the stress state inside the inclusion depends on its absolute size lc. Two saturation regimes are observed : when the size R of the inclusion is much larger than a characteristic size of the medium, the classical Eshelby solution is recovered. When R is much small than the inclusion, a much higher stress is reached (for an inclusion stiffer than the matrix) that does not depend on the size any more. There is a transition regime for which the stress state is not homogeneous inside the inclusion. Similar regimes are obtained in the study of grain size effects in polycrystalline aggregates of Cosserat grains.


1943 ◽  
Vol 10 (2) ◽  
pp. A69-A75
Author(s):  
Martin Goland

Abstract The purpose of this paper is to investigate the influence of several types of inclusions on the stress distribution in elastic plates under transverse flexure. An “inclusion” is defined as a close-fitting plate of some second material cemented into a hole cut in the interior of the elastic plate. Depending upon the properties of the material of which it is composed, the inclusion is described as rigid or elastic. In particular, the solutions presented will deal with the effects of circular inclusions of differing degrees of elasticity and rigid inclusions of varying elliptical form. Since the rigid inclusion and the hole are limiting types of elastic inclusions, and the circular shape is a special form of the ellipse, plates with either a circular hole or a circular rigid inclusion are important special cases of this discussion. It is hoped that the present analysis of several types of inclusions will aid in a future study of perforated plates stiffened by means of reinforcing rings fitted into the holes.


2019 ◽  
Vol 84 (3) ◽  
pp. 555-566
Author(s):  
Xu Wang ◽  
Liang Chen ◽  
Peter Schiavone

AbstractWe use conformal mapping techniques to solve the inverse problem concerned with an elastic non-elliptical harmonic inclusion in the vicinity of a rigid non-elliptical harmonic inclusion loaded by a couple when the surrounding matrix is subjected to remote uniform stresses. Both a size-independent complex loading parameter and a size-dependent real loading parameter are introduced as part of the solution procedure. The stress field inside the elastic inclusion is uniform and hydrostatic; the interfacial normal and tangential stresses as well as the hoop stress on the matrix side are uniform along each one of the two inclusion–matrix interfaces. The tangential stress along the interface of the elastic inclusion (free of external loading) vanishes, whereas that along the interface of the rigid inclusion (loaded by the couple) does not. A novel method is proposed to determine the area of the rigid inclusion.


Sign in / Sign up

Export Citation Format

Share Document