Effects of stress history on shear modulus of saturated Ottawa sand

2002 ◽  
Vol 39 (5) ◽  
pp. 1201-1208 ◽  
Author(s):  
Supot Teachavorasinskun ◽  
Pipat Thongchim ◽  
Panitan Lukkunaprasit

The shear modulus and damping ratio of undisturbed Bangkok clay samples were measured using a cyclic triaxial apparatus. Although abundant literature on this topic exists, selection of the most suitable empirical correlation for a seismic analysis cannot be done unless site specific data are obtained. The apparatus used in this research can measure the stress–strain relationships from strain levels of about 0.01%. The equivalent shear modulus measured at these strains was about 80% of the value obtained from the shear wave velocity measurements. The degradation curves of the equivalent shear modulus fell into the ranges reported in the literature, for clay having similar plasticity. The damping ratios varied from about 4–5% at small strains (0.01%) to about 25–30% at large strains (10%). The effects of load frequency and cyclic stress history on the shear modulus and damping ratio were also investigated. An increase in load frequency from 0.1 to 1.0 Hz had no influence on the shear modulus characteristic, but it did result in a slight decrease in the damping ratio. The effects of the small amplitude cyclic stress history on the subsequently measured shear modulus and damping ratio were almost negligible when the changes in void ratio were taken into account.Key words: soft clay, shear modulus, damping ratio, cyclic triaxial test, cyclic stress history.


2019 ◽  
Vol 92 ◽  
pp. 04005
Author(s):  
Vashish Taukoor ◽  
Cassandra J. Rutherford ◽  
Scott M. Olson

The small-strain shear modulus (Gmax) is a soil property that has many practical applications. The authors compiled a database of Gmax measurements for 40 normally consolidated to slightly overconsolidated low to high plasticity clays. Using these data, the authors propose a semi-empirical relationship between Gmax, effective stress (σ'v or σ'c), preconsolidation stress (σ'p) and in-situ void ratio (e0) for four ranges of plasticity index (Ip): Ip < 30%, 30% ≤ Ip < 50%, 50% ≤ Ip < 80% and 80% ≤ Ip < 120%. With results from bender element tests on a Gulf of Mexico clay subjected to multiple load-unload consolidation loops, the authors were able to validate the proposed relationships for 30% ≤ Ip < 50% and 50% ≤ Ip < 80%. The proposed relationship for 30% ≤ Ip < 50% and 50% ≤ Ip < 80% captures changes in laboratory Gmax resulting from variations in effective stress (σ'c), maximum past stress (σ'v,max), and void ratio. The proposed relationships are a simple and efficient tool that can provide independent insight on Gmax if the stress history of a clay is known, or on stress history if Gmax is known.


2020 ◽  
Vol 38 (6) ◽  
pp. 6421-6430
Author(s):  
Hirochika Hayashi ◽  
Osamu Hatakeyama ◽  
Hijiri Hashimoto ◽  
Masahiko Yamaki
Keyword(s):  

1978 ◽  
Vol 18 (4) ◽  
pp. 31-45 ◽  
Author(s):  
Kenji Ishihara ◽  
Shigeru Okada

Sign in / Sign up

Export Citation Format

Share Document