ottawa sand
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 20 (3) ◽  
pp. 1-11
Author(s):  
O. Olivares-Xometl ◽  
◽  
N.V. Likhanova ◽  
I.V. Lijanova ◽  
P. Arellanes-Lozada ◽  
...  

2021 ◽  
Vol 250 ◽  
pp. 02009
Author(s):  
Sidney Chocron ◽  
Alexander Carpenter ◽  
Arthur Nicholls ◽  
James Walker ◽  
Ohad Elbaz ◽  
...  

The present work aims at presenting consistent data both from laboratory characterization and from blast tests to see how a computer model performs when only data from mechanical tests are being fed to the constitutive model. A sand (Ottawa 20-30) that meets ASTM C778 requirements, i.e., well characterized microscopically, was tested in triaxial compression under confinement pressures ranging from 50 to 300 MPa and moisture contents of 0 to 15% as well as high strain-rates. These tests provided both the experimental equation of state (pressure vs. volume) and compaction curves as well as the strength vs. pressure properties to build a constitutive model both in LS-DYNA and CTH. Blast tests were subsequently performed by burying explosive at three different depths inside a sand pot with a rigid steel plate on top. During flight, the height of the steel plate was tracked with Phantom high-speed cameras to determine the impulse transmitted to the plate as well as the maximum jump height. Simulations were performed with both an Eulerian code (CTH) and a Lagrangian/ALE code (LS-DYNA) using the constitutive model determined during the material characterization. The predictions of both codes are as close as 7% and as far as 22%, depending on the test configuration.


2021 ◽  
Vol 249 ◽  
pp. 07006
Author(s):  
Brett Kuwik ◽  
Ryan C. Hurley

The dissipation of energy during the compaction of granular materials was studied by performing confined drop tower experiments on Ottawa sand. Energy dissipated due to breakage was quantified by evaluating the creation of new surfaces at varying drop heights. Post-compaction particle size distributions (PSD) were measured and the amount of breakage was quantified by the position of the current PSD relative to the pre-compaction and ultimate PSD. Our observations revealed that the percentage of input energy dissipated due to breakage accounted for less than 0.5% of the total energy budget and was a constant proportion regardless of the total energy applied to the system. We also evaluated the effects of die wall friction by measuring post-compaction PSD in various positions within the sample.


2020 ◽  
Vol 20 (4) ◽  
pp. 239-249
Author(s):  
Byongyoun Hwang ◽  
Tae-Young Kwak ◽  
Jongkwan Kim ◽  
Jin-Tae Han

In this study, a series of cyclic direct simple shear tests were conducted on Pohang sand, Jumunjin sand, and Ottawa sand. The cyclic resistance ratio (CRR) was derived on the basis of the test results obtained. For verification of the effect of particle distribution on liquefaction resistance, the simplified method for evaluation of the possibility of liquefaction was used to assess these sands. The test results showed that the cyclic resistance ratio of Pohang sand was the lowest, which was consistent with the result of the simplified evaluation method for determining the possibility of liquefaction. In addition, the results showed that the liquefaction resistance increased for particle shapes being more angular than round. Normalization was subsequently applied to minimize the effects of the different factors, and the correlation between the CRR<sub>N=10</sub> normalization curve and the CRR<sub>N=15</sub> normalization curve was confirmed.


2020 ◽  
Vol 1000 ◽  
pp. 220-226
Author(s):  
Wieke Pratiwi ◽  
Gaos Abdul Karim ◽  
Titi Rachmawati

Compressive strength of cement mortar is an important parameter in the quality control of Portland cement. The limitation of Ottawa sand imports has prompted a study on the potential and utilization of local silica sand available in several regions in Indonesia. The purpose of this study was to investigate the potential and possibility of utilizing local silica sand from several regions in Indonesia including Bangka, Belitung, Sidrap (South Sulawesi Province) as a substitute for standard Ottawa sand in cement mortar testing. Evaluation of local silica sands consisted of SEM analysis, characterization of silica sands and testing of cement mortar compressive strength. Silica sands from Bangka, Belitung and Tuban had silica content of more than 90%, while that from Sidrap was more or less 90%. Based on the SEM analysis, characteristic of silica sands, and compressive strength of cement mortar, local silica sand from Sidrap (South Sulawesi Province) has a good potential to be used as a substitute for standard Ottawa sand in testing of cement mortar.


2020 ◽  
Vol 195 ◽  
pp. 03016
Author(s):  
Hadi Kazemiroodsari ◽  
Mishac K. Yegian ◽  
Akram N. Alshawabkeh ◽  
Seda Gokyer

Sand characteristics such as liquefaction susceptibility can be affected as a result of change in degree of saturation of sand. New liquefaction mitigation technique by inducing partial saturation in sands is introduced by Yegian et al in 2007[1]. This technique requires to monitor changes in degree of saturation of sand. By nature, changes in degree of saturation of sand can lead in changes in its electric conductivity. Electric conductivity is the property of a material that represents its ability to conduct electric current. Fully saturated sand can conduct electric current better than sand with lower degree of saturation. Therefore, the change in measured electric conductivity can be used to calculate the change in degree of saturation of sand. In 1942, Gus Archie [2] expressed that the electric conductivity of soil is a function of its porosity, degree of saturation, tortuosity and electric conductivity of pore fluid. Using Archie’s law electrical conductivity can be related to the degree of saturation in sands. Typically, electric conductivity probes and meters are instruments which are used to measure electric conductivity. Using electrical conductivity probes, sets of bench top tests were conducted on Ottawa sand to study the relation between degree of saturation and electric conductivity in sand. Partial saturation in sands were created by pouring dry sand into sodium percarbonate solution with a known initial concentration. By nature, sodium percarbonate in water, generates oxygen gas bubbles in time. The changes in electric conductivity in the specimen were measured using electric conductivity meters and probes. In addition, changes in degree of saturation of the specimen were measured using soil phase relations equations. Measured electric conductivity data and calculated degree of saturations were correlated to explore relation between electric conductivity and degree of saturation. This paper presents results of bench top tests, and suggests a relationship between, final degree of saturation of sand and initial concentration of sodium percarbonate solution


2019 ◽  
Vol 124 (8) ◽  
pp. 8077-8100 ◽  
Author(s):  
C. S. Sandeep ◽  
V. Marzulli ◽  
F. Cafaro ◽  
K. Senetakis ◽  
T. Pöschel

2019 ◽  
Vol 9 (6) ◽  
pp. 1214 ◽  
Author(s):  
Sun-Gyu Choi ◽  
Tung Hoang ◽  
Sung-Sik Park

Microbially induced calcite precipitation can cement sand and is an environment-friendly alternative to ordinary Portland cement. In this study, clean Ottawa sand was microbially treated to induce calcite contents (CCs) of 0%, 2%, and 4%. Polyvinyl alcohol fiber was also mixed with the sand at four different contents (0%, 0.2%, 0.4%, and 0.6%) with a constant CC of 4%. A series of undrained triaxial tests was conducted on the treated sands to evaluate the effects of the calcite treatment and fiber inclusion. Their hydraulic conductivity was also determined using a constant head test. As the CC increased from 0% to 4%, the friction angle and cohesion increased from 35.3° to 39.6° and from 0 to 93 kPa, respectively. For specimens with a CC of 4%, as the fiber content increased from 0% to 0.6%, the friction angle and cohesion increased from 39.6° to 42.8° and from 93 to 139 kPa, respectively. The hydraulic conductivity of clean Ottawa sand decreased by a factor of more than 100 as the CC increased from 0% to 4%. The fiber inclusion had less effect on the hydraulic conductivity of the specimen with 4% CC.


Author(s):  
P. K. Kolay ◽  
V. K. Puri ◽  
R. Lama Tamang ◽  
G. Regmi ◽  
S. Kumar
Keyword(s):  
Fly Ash ◽  

Sign in / Sign up

Export Citation Format

Share Document