An in vitro model of drug/drug interaction at albumin binding sites

1979 ◽  
Vol 2 (4) ◽  
pp. 315-321 ◽  
Author(s):  
J.C. McElnay ◽  
P.F. D'Arcy
1996 ◽  
Vol 75 (01) ◽  
pp. 134-139 ◽  
Author(s):  
J L M Heeremans ◽  
P Los ◽  
R Prevost ◽  
D J A Crommelin ◽  
C Kluft

SummaryIn this study, the fibrin binding properties of liposomes containing a number of plasminogen (Pig) molecules on the outside were compared to those of free (non-liposomal) Pig in an in vitro model system. Fibrin monolayer coated 96-wells plates were used, containing fibrin monomer at a density of around 3.4 to 3.9 × 10-4 nmol/cm2. These densities are similar to liposomal Plg-densities, thus allowing multivalent interactions to occur.In the panel of experimental conditions that was chosen, binding of free Pig and liposomes with Pig showed three main differences in characteristics. Firstly, in the fibrin binding of Plg-liposomes not all Pig may be involved, but on the average 40% of the total amount of liposomal Pig. This was shown by lysing the liposomes after binding to the fibrin and estimation of truly bound Pig. With Plg-densities on the liposomes below the fibrin binding sites density, the maximal number of bound Pig molecules remains below the amount of available fibrin binding sites. Secondly, a higher binding rate by at least one order of magnitude was observed for liposomes with Pig compared to free Pig. Thirdly, liposomes with Pig exhibit a fibrin binding affinity which increases with Plg-density, because of the multivalent character of interaction. Liposomal Pig can successfully compete for fibrin binding sites with a 100 fold higher concentration of free Pig.These in vitro findings indicate that in view of avid and rapid fibrin binding, liposomes with attached plasminogen may be suitable for in vivo targeting to fibrin based thrombi.


2013 ◽  
Vol 27 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Mathias Devreese ◽  
Frank Pasmans ◽  
Patrick De Backer ◽  
Siska Croubels

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document