scholarly journals Purification and characterization of an endothelial cell-viability maintaining factor from fetal bovine serum

Author(s):  
G. Cai ◽  
T. Satoh ◽  
H. Hoshi
2013 ◽  
Vol 25 (1) ◽  
pp. 184
Author(s):  
H. Robbins ◽  
C. Dores ◽  
K. Coyle ◽  
I. Dobrinski

Spermatogonial stem cells (SSC) are the foundation of spermatogenesis. Undifferentiated spermatogonia, containing SSC, represent only 2 to 5% of cells recovered from immature mammalian testis. Cryopreservation in liquid nitrogen allows for long-term storage of cells. Preservation of germ cells can serve as a means of genetic preservation from immature males when sperm storage is not an option. Studies have investigated the effects of cryopreservation on the spermatogenic potential of SSC and the efficiency of various cryopreservation protocols. Preliminary observations indicated that germ cells may survive cryopreservation better than testicular somatic cells, resulting in a post-thaw cell population enriched in germ cells. However, this has not been critically evaluated. The objective of this study was to test the hypothesis that germ cells are less susceptible to cryo-damage than testicular somatic cells. Cells were harvested from the testes of 1-wk-old piglets by 2-step enzymatic digestion. The initial cell suspension was subjected to differential adhesion to enrich the cell population for germ cells. Cells were plated in DMEM + 5% fetal bovine serum and incubated at 37°C in 5% CO2 in air. After 18 h, cells in suspension and cells slightly attached were recovered by trypsinization (1 : 10 trypsin-ethylenediaminetetraacetic acid) for 30 s and replated. This was repeated 24 and 36 h after initial plating. The enriched population was placed into cryovials at a concentration of 30 × 106 cells in freezing media (70% DMEM + 20% fetal bovine serum + 10% dimethyl sulfoxide), kept for 24 h at –80°C in a cryogenic freezing container and transferred to liquid nitrogen for 1 week. Aliquots of cells before freezing and after thawing at 37°C followed by incubation at 37°C in 5% CO2 in air for 1 h were analyzed for viability by propidium iodide (PI) exclusion and immunofluorescence for the germ cell marker VASA to identify viable germ cells (VASA+/PI–), nonviable germ cells (VASA+/PI+), viable somatic cells (VASA–/PI–), and nonviable somatic cells (VASA–/PI+). The percentage of viable germ cells after freezing and thawing was compared to the percentage of viable somatic cells by ANOVA. After enrichment by differential plating, the cell population had 95.6 ± 0.9% viability and contained 27.1 ± 7.4% germ cells (n = 3 replicates). After cryopreservation, the overall cell viability was 77.5 ± 1.6%, and 25.8 ± 8.0% were germ cells. The overall viability after cryopreservation could potentially have benefited from the 1-h incubation prior to analysis. The viability of the germ cell population after freezing and thawing was higher (92.1 ± 3.1%) than somatic cell viability (72.3 ± 1.7%; P < 0.01). These results indicate that porcine germ cells survive cryopreservation better than do testicular somatic cells. Therefore, cryostorage of germ cells can be an efficient means for preservation of male genetic material. Supported by NIH ORIP/DCM RR17359.


2008 ◽  
Vol 86 (7) ◽  
pp. 403-415 ◽  
Author(s):  
S. Ganguly ◽  
L.A. Ashley ◽  
C.M. Pendleton ◽  
R.D. Grey ◽  
G.C. Howard ◽  
...  

Estrogen plays an important role in skeletal physiology by maintaining a remodeling balance between the activity of osteoblasts and osteoclasts. In an attempt to decipher the mechanism through which estrogen elicits its action on osteoblasts, experimentation necessitated the development of a culturing environment reduced in estrogenic compounds. The selected medium (OPTI-MEM) is enriched to sustain cultures under reduced fetal bovine serum (FBS) conditions and is devoid of the pH indicator phenol red, a suspected estrogenic agent. This protocol reduced the concentration of FBS supplementation to 0% through successive 24 h incubations with diminishing amounts of total FBS (1%, 0.1%, and 0%). The protocol does not appear to alter the viability, cell morphology, or osteoblast-like phenotype of 7F2 and UMR-106 cell lines when compared with control cells grown in various concentrations of FBS. Although the rate of mitotic divisions declined, the 7F2 and UMR-106 cultures continued to express osteoblast-specific markers and exhibited estrogen responsiveness. These experimental findings demonstrate that the culture protocol developed did not alter the osteoblast nature of the cell lines and provides a model system to study estrogen’s antiresorptive role on skeletal turnover.


Sign in / Sign up

Export Citation Format

Share Document