Estimation of the Fourier coefficient functions and their spectral densities for \gf-mixing almost periodically correlated processes

1992 ◽  
Vol 14 (4) ◽  
pp. 299-306 ◽  
Author(s):  
Harry L. Hurd ◽  
Jacek Leskow
2006 ◽  
Vol 2006 ◽  
pp. 1-17 ◽  
Author(s):  
Z. Shishebor ◽  
A. R. Nematollahi ◽  
A. R. Soltani

Periodically correlated autoregressive nonstationary processes of finite order are considered. The corresponding Yule-Walker equations are applied to derive the generating functions of the covariance functions, what are called here the periodic covariance generating functions. We also provide closed formulas for the spectral densities by using the periodic covariance generating functions, which is a new technique in the spectral theory of periodically correlated processes.


2018 ◽  
Vol 15 (1) ◽  
pp. 84-93
Author(s):  
V. I. Volovach ◽  
V. M. Artyushenko

Reviewed and analyzed the issues linked with the torque and naguszewski cumulant description of random processes. It is shown that if non-Gaussian random processes are given by both instantaneous and cumulative functions, it is assumed that such processes are fully specified. Spectral characteristics of non-Gaussian random processes are considered. It is shown that higher spectral densities exist only for non-Gaussian random processes.


Author(s):  
Mahnaz Khalafi ◽  
Ahmad Reza Soltani ◽  
Masoud Golalipour ◽  
Farzad Najafiamiri

2021 ◽  
Author(s):  
Kai Chen ◽  
Twan van Laarhoven ◽  
Elena Marchiori

AbstractLong-term forecasting involves predicting a horizon that is far ahead of the last observation. It is a problem of high practical relevance, for instance for companies in order to decide upon expensive long-term investments. Despite the recent progress and success of Gaussian processes (GPs) based on spectral mixture kernels, long-term forecasting remains a challenging problem for these kernels because they decay exponentially at large horizons. This is mainly due to their use of a mixture of Gaussians to model spectral densities. Characteristics of the signal important for long-term forecasting can be unravelled by investigating the distribution of the Fourier coefficients of (the training part of) the signal, which is non-smooth, heavy-tailed, sparse, and skewed. The heavy tail and skewness characteristics of such distributions in the spectral domain allow to capture long-range covariance of the signal in the time domain. Motivated by these observations, we propose to model spectral densities using a skewed Laplace spectral mixture (SLSM) due to the skewness of its peaks, sparsity, non-smoothness, and heavy tail characteristics. By applying the inverse Fourier Transform to this spectral density we obtain a new GP kernel for long-term forecasting. In addition, we adapt the lottery ticket method, originally developed to prune weights of a neural network, to GPs in order to automatically select the number of kernel components. Results of extensive experiments, including a multivariate time series, show the beneficial effect of the proposed SLSM kernel for long-term extrapolation and robustness to the choice of the number of mixture components.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1254
Author(s):  
Xue Han ◽  
Xiaofei Yan ◽  
Deyu Zhang

Let Pc(x)={p≤x|p,[pc]areprimes},c∈R+∖N and λsym2f(n) be the n-th Fourier coefficient associated with the symmetric square L-function L(s,sym2f). For any A>0, we prove that the mean value of λsym2f(n) over Pc(x) is ≪xlog−A−2x for almost all c∈ε,(5+3)/8−ε in the sense of Lebesgue measure. Furthermore, it holds for all c∈(0,1) under the Riemann Hypothesis. Furthermore, we obtain that asymptotic formula for λf2(n) over Pc(x) is ∑p,qprimep≤x,q=[pc]λf2(p)=xclog2x(1+o(1)), for almost all c∈ε,(5+3)/8−ε, where λf(n) is the normalized n-th Fourier coefficient associated with a holomorphic cusp form f for the full modular group.


1998 ◽  
Vol 249-251 ◽  
pp. 175-179
Author(s):  
B. Kardynal ◽  
C.H.W. Barnes ◽  
E.H. Linfield ◽  
D.A. Ritchie ◽  
J.T. Nicholls ◽  
...  

1993 ◽  
Vol 60 (2) ◽  
pp. 358-365 ◽  
Author(s):  
R. Vale´ry Roy ◽  
P. D. Spanos

Spectral densities of the response of nonlinear systems to white noise excitation are considered. By using a formal solution of the associated Fokker-Planck-Kolmogorov equation, response spectral densities are represented by formal power series expansion for large frequencies. The coefficients of the series, known as the spectral moments, are determined in terms of first-order response statistics. Alternatively, a J-fraction representation of spectral densities can be achieved by using a generalization of the Lanczos algorithm for matrix tridiagonalization, known as the “recursion method.” Sequences of rational approximations of increasing order are obtained. They are used for numerical calculations regarding the single-well and double-well Duffing oscillators, and Van der Pol type oscillators. Digital simulations demonstrate that the proposed approach can be quite reliable over large variations of the system parameters. Further, it is quite versatile as it can be used for the determination of the spectrum of the response of a broad class of randomly excited nonlinear oscillators, with the sole prerequisite being the availability, in exact or approximate form, of the stationary probability density of the response.


Sign in / Sign up

Export Citation Format

Share Document