End-product inhibition in anaerobic fermentations

1983 ◽  
Vol 1 (2) ◽  
pp. 49-53 ◽  
Author(s):  
Alejandro A. Herrero
1985 ◽  
Vol 40 (7) ◽  
pp. 736-747
Author(s):  
Sang H. Kim ◽  
Vladimir Hlavacek

The dynamic behavior of an autocatalytic reaction with a product inhibition term is studied in a flow system. A unique steady state exists in the continuous tank reactor. Linear stability analysis predicts either a stable node, a focus or an unstable saddle-focus. Sustained oscillations around the unstable focus can occur for high values of the Damköhler number (Da). In the distributed system, travelling, standing or complex oscillatory waves are detected. For a low value of Da, travelling waves with a pseudo-constant pattern are observed. With an intermediate value of Da, single or multiple standing waves are obtained. The temporal behavior indicates also the appearance of retriggering or echo waves. For a high value of Da, both single peak and complex multipeak oscillations are found. In the cell model, both regular oscillations near the inlet and chaotic behavior downstream are observed. In the dispersion model, higher Peclet numbers (Pe) eliminate the oscillations. The spatial profile shows a train of pulsating waves for the discrete model and a single pulsating or solitary wave for the continuous model.


1974 ◽  
Vol 249 (5) ◽  
pp. 1348-1355
Author(s):  
Ilga Winicov ◽  
Lewis I. Pizer

1974 ◽  
Vol 141 (3) ◽  
pp. 817-824 ◽  
Author(s):  
Keith R. F. Elliott ◽  
Keith F. Tipton

A study of the product-inhibition patterns of carbamoyl phosphate synthetase from bovine liver is reported. Inhibition by adenosine, AMP and inorganic ions is also reported. The results are in agreement with the previously proposed model in which the order of substrate binding is ATPMg, followed by HCO3−, ATPMg and NH4+. The order of product release on the basis of the reported results is carbamoyl phosphate, followed by ADPMg, ADPMg and inorganic phosphate.


β-Lactam antibiotics resistant to β-lactamase degradation can be produced by many chemical modifications, but often at the expense of antibacterial activity. Substitution onto several positions in the molecule produces different and often selective resistance; for instance, heavily sterically hindered acyl groups give staphylococcal P-lactamase resistance to penicillins, and resistance to some enzymes from Gram-negative pathogens to both penicillins and cephalosporins. 6-α- or 7-α-substituents respectively confer a broad spectrum of resistance (e.g. cefoxitin), but changes at positions 2 or 3 have only a minor influence on enzyme susceptibility. Changes in the ring condensed with the β-lactam, such as changing ceph-3-em to ceph-2-em may greatly enhance stability. Small improvements can occur when the nuclear sulphur atom is oxidized, but a much better effect is obtained when it is replaced by another atom such as oxygen, as in clavulanic acid. This compound appears to have broad spectrum resistance which is actually due to susceptibility and subsequent product inhibition.


2007 ◽  
Vol 362 (1486) ◽  
pp. 1841-1845 ◽  
Author(s):  
Tristan Rocheleau ◽  
Steen Rasmussen ◽  
Peter E Nielsen ◽  
Martin N Jacobi ◽  
Hans Ziock

Template-directed replication is known to obey a parabolic growth law due to product inhibition (Sievers & Von Kiedrowski 1994 Nature 369 , 221; Lee et al . 1996 Nature 382 , 525; Varga & Szathmáry 1997 Bull. Math. Biol . 59 , 1145). We investigate a template-directed replication with a coupled template catalysed lipid aggregate production as a model of a minimal protocell and show analytically that the autocatalytic template–container feedback ensures balanced exponential replication kinetics; both the genes and the container grow exponentially with the same exponent. The parabolic gene replication does not limit the protocellular growth, and a detailed stoichiometric control of the individual protocell components is not necessary to ensure a balanced gene–container growth as conjectured by various authors (Gánti 2004 Chemoton theory ). Our analysis also suggests that the exponential growth of most modern biological systems emerges from the inherent spatial quality of the container replication process as we show analytically how the internal gene and metabolic kinetics determine the cell population's generation time and not the growth law (Burdett & Kirkwood 1983 J. Theor. Biol . 103 , 11–20; Novak et al . 1998 Biophys. Chem . 72 , 185–200; Tyson et al . 2003 Curr. Opin. Cell Biol . 15 , 221–231). Previous extensive replication reaction kinetic studies have mainly focused on template replication and have not included a coupling to metabolic container dynamics (Stadler et al . 2000 Bull. Math. Biol . 62 , 1061–1086; Stadler & Stadler 2003 Adv. Comp. Syst . 6 , 47). The reported results extend these investigations. Finally, the coordinated exponential gene–container growth law stemming from catalysis is an encouraging circumstance for the many experimental groups currently engaged in assembling self-replicating minimal artificial cells (Szostak 2001 et al . Nature 409 , 387–390; Pohorille & Deamer 2002 Trends Biotech . 20 123–128; Rasmussen et al . 2004 Science 303 , 963–965; Szathmáry 2005 Nature 433 , 469–470; Luisi et al . 2006 Naturwissenschaften 93 , 1–13). 1


Sign in / Sign up

Export Citation Format

Share Document