Identification of a trnH (GUG) gene and of several pseudogenes downstream of psbA gene in the common bean chloroplast genome

Plant Science ◽  
1994 ◽  
Vol 98 (1) ◽  
pp. 47-52
Author(s):  
O. Carelse ◽  
C.J. Chetsanga ◽  
M.V. Mubumbila
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evdoxia Efstathiadou ◽  
Georgia Ntatsi ◽  
Dimitrios Savvas ◽  
Anastasia P. Tampakaki

AbstractPhaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.


2010 ◽  
Vol 28 (1) ◽  
pp. 57-71 ◽  
Author(s):  
George S. Mahuku ◽  
María Antonia Henríquez ◽  
Carmenza Montoya ◽  
Carlos Jara ◽  
Henry Teran ◽  
...  

2010 ◽  
Vol 10 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Alisson Fernando Chiorato ◽  
Sérgio Augusto Morais Carbonell ◽  
Roland Vencovsky ◽  
Nelson da Silva Fonseca Júnior ◽  
José Baldin Pinheiro

The goal of the present work was to evaluate the genetic gain obtained in grain yield for the common bean genotypes from 1989 until 2007, at the Instituto Agronômico de Campinas, in the state of São Paulo. Genetic gain has been separated into two research periods; the first, from 1989 to 1996, and the second, from 1997 to 2007. In the first period, a genetic gain of 1.07 % per year was obtained, whereas for the second period, the gain was zero. However, the mean yield of the evaluated lines was approximately 1000 kg ha-1 superior to the figures obtained in the first period. The main cause for the absence of genetic gain in the second period is that the focus of the breeding program was changed to grain quality. The individualized analysis of the genotypes with carioca grains in the second period indicated the lack of genetic gain during the investigated period.


2003 ◽  
Vol 49 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Elizabete HELBIG ◽  
Admar Costa de OLIVEIRA ◽  
Keila da Silva QUEIROZ ◽  
Soely Maria Pissini Machado REIS

2016 ◽  
Vol 7 ◽  
Author(s):  
Keren Martínez-Aguilar ◽  
Gabriela Ramírez-Carrasco ◽  
José Luis Hernández-Chávez ◽  
Aarón Barraza ◽  
Raúl Alvarez-Venegas

1972 ◽  
Vol 14 (5) ◽  
pp. 369-370 ◽  
Author(s):  
J. Polák ◽  
J. Chod

Sign in / Sign up

Export Citation Format

Share Document