Modulation of the cluster 1 and mucin antigens in human small cell lung cancer and other epithelial tumour cell lines after treatment with the differentiation inducing agent, sodium butyrate

Lung Cancer ◽  
1991 ◽  
Vol 7 (6) ◽  
pp. 390
2004 ◽  
Vol 19 (4) ◽  
pp. 262-267 ◽  
Author(s):  
C. Arun ◽  
M. DeCatris ◽  
D.M. Hemingway ◽  
N.J.M. London ◽  
K.J. O'Byrne

Endothelin-1 (ET-1) is a potent vasoactive peptide and a hypoxia-inducible angiogenic growth factor associated with the development and growth of solid tumours. This study evaluated the expression of big endothelin-1 (big ET-1), a stable precursor of ET-1, and ET-1 in non-small cell lung cancer (NSCLC). Big ET-1 expression was evaluated in paraffin-embedded tissue sections from 10 NSCLC tumours using immunohistochemistry and in situ hybridisation. The production of big ET-1 and ET-1 was studied in six established NSCLC cell lines. The plasma concentrations of big ET-1 were measured in 30 patients with proven NSCLC prior to chemotherapy by means of a sandwich enzyme-linked immunoassay and compared to levels in 20 normal controls. Big ET-1 immunostaining was detected in the cancer cells of all tumours studied. Using in situ hybridisation, tumour cell big ET-1 mRNA expression was demonstrated in all samples. All six NSCLC cell lines expressed ET-1, with big ET-1 being detected in three. The median big ET-1 plasma level in patients with NSCLC was 5.4 pg/mL (range 0–22.7 pg/mL) and was significantly elevated compared to median big ET-1 plasma levels in controls, 2.1 pg/mL (1.2–13.4 pg/mL) (p=0.0001). Furthermore, patients with plasma big ET-1 levels above the normal range (upper tertile) had a worse outcome (p=0.01). In conclusion, big ET-1/ET-1 is expressed by resected NSCLC specimens and tumour cell lines. Plasma big ET-1 levels are elevated in NSCLC patients compared to controls with levels >7.8 pg/mL being associated with a worse outcome. The development of selective ET-1 antagonists such as Atrasentan indicates that ET-1 may be a therapeutic target in NSCLC.


2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Kaili Long ◽  
Lili Gu ◽  
Lulu Li ◽  
Ziyu Zhang ◽  
Enjie Li ◽  
...  

AbstractApurinic/apyrimidinic endonuclease 1 (APE1) plays a critical role in the base excision repair (BER) pathway, which is responsible for the excision of apurinic sites (AP sites). In non-small cell lung cancer (NSCLC), APE1 is highly expressed and associated with poor patient prognosis. The suppression of APE1 could lead to the accumulation of unrepaired DNA damage in cells. Therefore, APE1 is viewed as an important marker of malignant tumors and could serve as a potent target for the development of antitumor drugs. In this study, we performed a high-throughput virtual screening of a small-molecule library using the three-dimensional structure of APE1 protein. Using the AP site cleavage assay and a cell survival assay, we identified a small molecular compound, NO.0449-0145, to act as an APE1 inhibitor. Treatment with NO.0449-0145 induced DNA damage, apoptosis, pyroptosis, and necroptosis in the NSCLC cell lines A549 and NCI-H460. This inhibitor was also able to impede cancer progression in an NCI-H460 mouse model. Moreover, NO.0449-0145 overcame both cisplatin- and erlotinib-resistance in NSCLC cell lines. These findings underscore the importance of APE1 as a therapeutic target in NSCLC and offer a paradigm for the development of small-molecule drugs that target key DNA repair proteins for the treatment of NSCLC and other cancers.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Walter Z. Wang ◽  
Konstantin Shilo ◽  
Joseph M. Amann ◽  
Alyssa Shulman ◽  
Mohammad Hojjat-Farsangi ◽  
...  

AbstractSmall cell lung cancer (SCLC) remains a deadly form of cancer, with a 5-year survival rate of less than 10 percent, necessitating novel therapies. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein that is emerging as a therapeutic target and is co-expressed with BCL2 in multiple tumor types due to microRNA coregulation. We hypothesize that ROR1-targeted therapy is effective in small cell lung cancer and synergizes with therapeutic BCL2 inhibition. Tissue microarrays (TMAs) and formalin-fixed paraffin-embedded (FFPE) SCLC patient samples were utilized to determine the prevalence of ROR1 and BCL2 expression in SCLC. Eight SCLC-derived cell lines were used to determine the antitumor activity of a small molecule ROR1 inhibitor (KAN0441571C) alone and in combination with the BCL2 inhibitor venetoclax. The Chou-Talalay method was utilized to determine synergy with the drug combination. ROR1 and BCL2 protein expression was identified in 93% (52/56) and 86% (48/56) of SCLC patient samples, respectively. Similarly, ROR1 and BCL2 were shown by qRT-PCR to have elevated expression in 79% (22/28) and 100% (28/28) of SCLC patient samples, respectively. KAN0441571C displayed efficacy in 8 SCLC cell lines, with an IC50 of 500 nM or less. Synergy as defined by a combination index of <1 via the Chou-Talalay method between KAN0441571C and venetoclax was demonstrated in 8 SCLC cell lines. We have shown that ROR1 inhibition is synergistic with BCL2 inhibition in SCLC models and shows promise as a novel therapeutic target in SCLC.


2016 ◽  
Vol 375 (2) ◽  
pp. 313-322 ◽  
Author(s):  
Christophe Deben ◽  
Filip Lardon ◽  
An Wouters ◽  
Ken Op de Beeck ◽  
Jolien Van den Bossche ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoshan Su ◽  
Ning Liu ◽  
Weijing Wu ◽  
Zhixing Zhu ◽  
Yuan Xu ◽  
...  

Abstract Background Kindlin Family Members have been reported to be aberrantly expressed in various human cancer types and involved in tumorigenesis, tumor progression, and chemoresistance. However, their roles in non-small cell lung cancer (NSCLC) remain poorly elucidated. Methods We analyzed the prognostic value and immune infiltration of Kindlins in NSCLC through Oncomine, GEPIA, UALCAN, CCLE, Kaplan‑Meier plotter, cBioPortal, TIMER, GeneMANIA, STRING, and DAVID database. Additionally, the mRNA expression levels of Kindlins were verified in 30 paired NSCLC tissues and NSCLC cell lines by real-time PCR. Results The expression level of FERMT1 was remarkably increased in NSCLC tissues and NSCLC cell lines, while FERMT2 and FERMT3 were reduced. Kindlins expressions were associated with individual cancer stages and nodal metastasis. We also found that higher expression level of FERMT1 was obviously correlated with worse overall survival (OS) in patients with NSCLC, while higher FERMT2 was strongly associated with better overall survival (OS) and first progression (FP). Additionally, the expression of FERMT2 and FERMT3 were obviously correlated with the immune infiltration of diverse immune cells. Functional enrichment analysis has shown that Kindlins may be significantly correlated with intracellular signal transduction, ATP binding and the PI3K-Akt signaling pathway in NSCLC. Conclusions The research provides a new perspective on the distinct roles of Kindlins in NSCLC and likely has important implications for future novel biomarkers and therapeutic targets in NSCLC.


2017 ◽  
Vol Volume 10 ◽  
pp. 1921-1932 ◽  
Author(s):  
Michelle Townsend ◽  
Michael Anderson ◽  
Evita Weagel ◽  
Edwin Velazquez ◽  
K. Scott Weber ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 2509-2522 ◽  
Author(s):  
Shousen Hu ◽  
Yongliang Yuan ◽  
Zhizhen Song ◽  
Dan Yan ◽  
Xiangzhen Kong

Background/Aims: Drug resistance remains a main obstacle to the treatment of non- small cell lung cancer (NSCLC). The aim of this study was to identify the expression profiles of microRNAs (miRNAs) in drug-resistant NSCLC cell lines. Methods: The expression profiles of miRNAs in drug-resistant NSCLC cell lines were examined using miRNA sequencing, and the common dysregulated miRNAs in these cell lines were identified and analyzed by bioinformatics methods. Results: A total of 29 upregulated miRNAs and 36 downregulated miRNAs were found in the drug-resistant NSCLC cell lines, of which 26 upregulated and 36 downregulated miRNAs were found to be involved in the Ras signaling pathway. The expression levels, survival analysis, and receiver operating characteristic curve of the dysregulated miRNAs based on The Cancer Genome Atlas database for lung adenocarcinoma showed that hsa-mir-192, hsa-mir-1293, hsa-mir-194, hsa-mir-561, hsa-mir-205, hsa-mir-30a, and hsa-mir-30c were related to lung cancer, whereas only hsa-mir-1293 and hsa-mir-561 were not involved in drug resistance. Conclusion: The results of this study may provide novel biomarkers for drug resistance in NSCLC and potential therapies for overcoming drug resistance, and may also reveal the potential mechanisms underlying drug resistance in this disease.


Sign in / Sign up

Export Citation Format

Share Document