molecular compound
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 47)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Xiaomeng Guo ◽  
Hongbo Chen ◽  
Yan Liu ◽  
Dawei Yang ◽  
Qian Li ◽  
...  

Emerging studies have shown that mitochondrial G-quadruplex plays a critical role in regulating mitochondrial gene replication and transcription, which makes it a promising target for the diagnosis and treatment of...


Author(s):  
Jorge Macridachis ◽  
Laura Bayés-García ◽  
Teresa Calvet

Differential scanning calorimetry and X-ray diffraction were used to investigate the mixing behavior of triacylglycerol (TAG) mixtures of PPP/PPO (tripalmitoyl glycerol/1,2-dipalmitoyl-3-oleoyl-rac-glycerol) and PPP/MCPOP/PPO (being MCPOP/PPO the equimolecular blend of 1,3-dipalmitoyl-2-oleoyl-glycerol...


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Heng Sun ◽  
Lijia Zhang ◽  
Bowen Sui ◽  
Yu Li ◽  
Jun Yan ◽  
...  

Among all malignant tumors in the whole universe, the incidence and mortality of lung cancer disease rank first. Especially in the past few years, the occurrence of lung cancer in the urban population has continued to increase, which seriously threatens the lives and health of people. Among the many treatments for lung cancer, chemotherapy is the best one, but traditional chemotherapy has low specificity and drug resistance. To address the above issue, this study reviews the five biological pathways that common terpenoid compounds in medicinal plants interfere with the occurrence and development of lung cancer: cell proliferation, cell apoptosis, cell autophagy, cell invasion, metastasis, and immune mechanism regulation. In addition, the mechanism of the terpenoid natural traditional Chinese medicine monomer compound combined with Western medicine in the multipathway antilung cancer is summarized.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Hong Lin Zu ◽  
Hong Wei Liu ◽  
Hai Yang Wang

Abstract Background The diameter of the abdominal aortic aneurysm (AAA) is the most commonly used parameter for the prediction of occurrence of AAA rupture. However, the most vulnerable region of the aortic wall may be different from the most dilated region of AAA under pressure. The present study is the first to use weighted gene coexpression network analysis (WGCNA) to detect the coexpressed genes that result in regional weakening of the aortic wall. Methods The GSE165470 raw microarray dataset was used in the present study. Differentially expressed genes (DEGs) were filtered using the “limma” R package. DEGs were assessed by Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. WGCNA was used to construct the coexpression networks in the samples with regional weakening of the AAA wall and in the control group to detect the gene modules. The hub genes were defined in the significant functional modules, and a hub differentially expressed gene (hDEG) coexpression network was constructed with the highest confidence based on protein–protein interactions (PPIs). Molecular compound detection (MCODE) was used to identify crucial genes in the hDEG coexpression network. Crucial genes in the hDEG coexpression network were validated using the GSE7084 and GSE57691 microarray gene expression datasets. Result A total of 350 DEGs were identified, including 62 upregulated and 288 downregulated DEGs. The pathways were involved in immune responses, vascular smooth muscle contraction and cell–matrix adhesion of DEGs in the samples with regional weakening in AAA. Antiquewhite3 was the most significant module and was used to identify downregulated hDEGs based on the result of the most significant modules negatively related to the trait of weakened aneurysm walls. Seven crucial genes were identified and validated: ACTG2, CALD1, LMOD1, MYH11, MYL9, MYLK, and TPM2. These crucial genes were associated with the mechanisms of AAA progression. Conclusion We identified crucial genes that may play a significant role in weakening of the AAA wall and may be potential targets for medical therapies and diagnostic biomarkers. Further studies are required to more comprehensively elucidate the functions of crucial genes in the pathogenesis of regional weakening in AAA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simeng Zhang ◽  
Zhongyan Hua ◽  
Gen Ba ◽  
Ning Xu ◽  
Jianing Miao ◽  
...  

Abstract Background Neuroblastoma (NB) is a common solid malignancy in children that is associated with a poor prognosis. Although the novel small molecular compound Dimethylaminomicheliolide (DMAMCL) has been shown to induce cell death in some tumors, little is known about its role in NB. Methods We examined the effect of DMAMCL on four NB cell lines (NPG, AS, KCNR, BE2). Cellular confluence, survival, apoptosis, and glycolysis were detected using Incucyte ZOOM, CCK-8 assays, Annexin V-PE/7-AAD flow cytometry, and Seahorse XFe96, respectively. Synergistic effects between agents were evaluated using CompuSyn and the effect of DMAMCL in vivo was evaluated using a xenograft mouse model. Phosphofructokinase-1, liver type (PFKL) expression was up- and down-regulated using overexpression plasmids or siRNA. Results When administered as a single agent, DMAMCL decreased cell proliferation in a time- and dose-dependent manner, increased the percentage of cells in SubG1 phase, and induced apoptosis in vitro, as well as inhibiting tumor growth and prolonging survival in tumor-bearing mice (NGP, BE2) in vivo. In addition, DMAMCL exerted synergistic effects when combined with etoposide or cisplatin in vitro and displayed increased antitumor effects when combined with etoposide in vivo compared to either agent alone. Mechanistically, DMAMCL suppressed aerobic glycolysis by decreasing glucose consumption, lactate excretion, and ATP production, as well as reducing the expression of PFKL, a key glycolysis enzyme, in vitro and in vivo. Furthermore, PFKL overexpression attenuated DMAMCL-induced cell death, whereas PFKL silencing promoted NB cell death. Conclusions The results of this study suggest that DMAMCL exerts antitumor effects on NB both in vitro and in vivo by suppressing aerobic glycolysis and that PFKL could be a potential target of DMAMCL in NB.


IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna Olejniczak ◽  
Anna Katrusiak ◽  
Marcin Podsiadło ◽  
Andrzej Katrusiak

Partial hydration of organic compounds can be achieved by high-pressure crystallization. This has been demonstrated for the high-nitrogen-content compound 6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl), which becomes partly hydrated by isochoric crystallizations below 0.15 GPa. This hydrate, C4H2N5Cl·xH2O, is isostructural with the ambient-pressure phase α of C4H2N5Cl, but the crystal volume is somewhat larger than that of the anhydrate. At 0.20 GPa, the α-C4H2N5Cl anhydrate phase transforms abruptly into a new higher-symmetry phase, α′; the transformation is clearly visible due to a strong contraction of the crystals. The hydrate α-C4H2N5Cl·xH2O can also be isothermally compressed up to 0.30 GPa before transforming to the α′-C4H2N5Cl·xH2O phase. The isochoric recrystallization of C4H2N5Cl above 0.18 GPa yields a new anhydrous phase β, which, on releasing pressure, transforms back to the α phase below 0.15 GPa. The structural transition from the α to the β phase is destructive for the single crystal and involves a large volume drop and significant elongation of all the shortest intermolecular distances which are the CH...N and CH...Cl hydrogen bonds, as well as the N...N contacts. The α-to-α′ phase transition increases the crystal symmetry in the subgroup relation; however, there are no structural nor symmetry relations between phases α and β.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2187
Author(s):  
Anton A. Ulantikov ◽  
Taisiya S. Sukhikh ◽  
Evgeniy N. Gribov ◽  
Natalia V. Maltseva ◽  
Konstantin A. Brylev ◽  
...  

The selective preparation, structural and spectroscopic study of two new rhenium cluster complexes trans-[Re6S8(bpy)4(CN)2] and trans-[Re6S8(bpy)2(CN)4]2− (bpy = 4,4′-bipyridine) obtained by reactions of corresponding hexarhenium cyanohalides with molten bpy are reported. The complexes were crystallized as solvates, displaying supramolecular structures based on cluster units linked by numerous weak interactions with bpy molecules. The molecular compound trans-[Re6S8(bpy)4(CN)2] (1) is insoluble in water and common organic solvents, while the ionic compound trans-Cs1.7K0.3[Re6S8(bpy)2(CN)4] (2) is somewhat soluble in DMSO, DMF and N-methylpyrrolidone. The presence of the redox-active ligand bpy leads to the occurrence of multi-electron reduction transitions in a solution of 2 at moderate potential values. The ambidentate CN− ligand is the secondary functional group, which has potential for the synthesis of coordination polymers based on the new cluster complexes. In addition, both new compounds show a weak red luminescence, which is characteristic of complexes with a {Re6S8}2+ cluster core.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012008
Author(s):  
V I Zarembo ◽  
S A Pankov ◽  
D V Zarembo ◽  
V Yu Sokolov

Abstract Poly (diethylene glycol adipate) is an important product of chemical technology. Several grades of polyesters (P-9, P-9A) are produced in the industry, in which poly(diethylene glycol adipate) is the main component. These composites are used in production of binders of mixed rocket solid fuels, as well as consumer goods. Poly(diethylene glycol adipate) is obtained by polycondensation of diethylene glycol and adipic acid. Usually, the polycondensation is carried out using catalysts. The use of catalysts complicates this process: requires further purification process or in solvent free system might slow reaction rate due to the limiting diffusion between reactants and mass transfer limitations. Therefore, it was proposed to use low-intensity ultrasound, which allows to influence the kinetics of the process without complicating the system. In this work, the reaction of polycondensation of diethylene glycol and adipic acid in low-intensity ultrasound was studied. The results of applying low-intensity ultrasound to the preparation of poly(diethylene glycol adipate) showed an increase in the reaction rate of the formation of a high-molecular compound and a change in the thermal regime. Application of low-intensity ultrasound provides synchronization of vibration and rotation of self-organizing dissipative structures, which leads to the decrease in energy consumption for mass transfer, thereby increasing the reaction rate. The low-intensity ultrasound demonstrated to be an effective method to intensify the polycondensation reaction.


Author(s):  
Maxime A. Bonnin ◽  
Lkhamsuren Bayarjargal ◽  
Silke Wolf ◽  
Victor Milman ◽  
Björn Winkler ◽  
...  
Keyword(s):  

Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 295
Author(s):  
Natalia Bogdanovich ◽  
Elena Kozlova ◽  
Tagir Karamov

The paper discusses the issues of interaction of the organic matter and the siliceous-carbonate mineral matrix in unconventional reservoirs of the Upper Devonian Domanik Formation of the Upper Kama Depression of the Volga-Ural Basin. The Domanik Formation is composed of organic-rich low-permeability rocks. Lithological and geochemical peculiarities of rocks were studied using light microscopy, X-ray diffraction analysis (XRD), scanning electronic microscopy (SEM), and evaporation method. Organic matter was examined by the Rock-Eval pyrolysis with quantitative and qualitative evaluation of generation potential and maturity degree. Integrated analysis of results of lithological and geochemical studies allowed identifying intervals in the studied section where organic matter can form a complex association with the siliceous-carbonate matrix. It was fixed experimentally that in some cases the mineral carbonate matrix and the organic matter form a one-whole high-molecular compound. The authors supposed that in the course of sedimentation, organic matter is immobilized into the structure of the mineral carbonate matrix. At the deposition and diagenesis stage, the carbonate matter interacts with acids of the organic matter and forms natural organo-mineral polymers. Special physicochemical properties of such organo-mineral associations shed new light onto the problems of producing from hard-to-develop nonconventional carbonate reservoirs and evaluating the associated risks.


Sign in / Sign up

Export Citation Format

Share Document