Effects of clomiphene and tamoxifen in vivo on the bone-resorbing effects of parathyroid hormone and of high oral doses of calcitriol (1,25(OH)2D3) in rats with intact ovarian function consuming low calcium diet

1990 ◽  
Vol 8 (3) ◽  
pp. 185-193 ◽  
Author(s):  
A. Goulding ◽  
E. Gold ◽  
L. Fisher
1990 ◽  
Vol 21 (4) ◽  
pp. 547-549 ◽  
Author(s):  
Akifumi Togari ◽  
Sumio Shintani ◽  
Michitsugu Arai ◽  
Shosei Matsumoto ◽  
Toshiharu Nagatsu

1997 ◽  
Vol 93 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Piergiorgio Messa ◽  
Martino Marangella ◽  
Luisa Paganin ◽  
Mara Codardini ◽  
Aldo Cruciatti ◽  
...  

1. Dietary calcium restriction, an efficient practice in reducing urinary calcium excretion, has been reported to induce either an increase or no change in oxalate excretion, questioning its use in hypercalciuric stone-forming patients. In addition, calcium restriction has been previously demonstrated to induce other urinary changes which might influence the relative supersaturation of calcium oxalate. So the overall effect of calcium deprivation on the relative supersaturation of calcium oxalate is unpredictable. 2. The aim of the study was to evaluate the effect of dietary calcium restriction on the relative supersaturation of calcium oxalate in the urine of stone-forming patients utilizing a computer methodology which takes into account the main soluble complex species of oxalate. 3. We studied 34 stone-forming patients on both a free-choice diet, whose Ca and oxalate content (24 and 1.2 mmol respectively) was assessed by dietary inquiry, and after 30 days on a prescribed low-calcium and normal oxalate diet (11 and 1.1 mmol respectively). Under both conditions, the excretion of the main urinary parameters related to dietary composition, electrolytes, oxalate and daily citrate urinary excretion, were measured. The relative supersaturation of calcium oxalate was calculated by means of an iterative computer method which takes into account the main soluble complex species on which the solubility of calcium oxalate is dependent. In addition, intact parathyroid hormone and 1,25-dihydroxyvitamin D blood levels were also evaluated. In 13 of the patients intestinal calcium absorption was evaluated during both a free- and a low-calcium diet, utilizing kinetics methodology. 4. The low-calcium diet induced, together with an expected reduction of calcium excretion, a marked increase in oxalate urinary output. This finding was independent of the presence or otherwise of hypercalciuria and of the serum levels of parathyroid hormone and vitamin D. Intestinal calcium absorption was also stimulated by calcium deprivation and its levels were well correlated with oxalate excretion. Minor changes in magnesium and citrate excretion were also observed. The overall effect on the relative supersaturation of calcium oxalate consisted in a substantial increase in this parameter during the low-calcium diet. 5. In conclusion, our data reinforce the concept that dietary calcium restriction has potentially deleterious effects on lithogenesis, by increasing the relative supersaturation of calcium oxalate.


2020 ◽  
Author(s):  
Meng Fanyu ◽  
Fan Lina ◽  
Sun Lin ◽  
Yu Qingli ◽  
Maoqing Wang ◽  
...  

Abstract Background We previously identified the urinary biomarkers to diagnose calcium deficiency and nutritional rickets by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS/MS).To further confirm these biomarkers in vivo, we performed serum metabolomics analysis of calcium deficiency. Methods A calcium-deficient rat model was established with a low-calcium diet for 12 weeks. Serum-metabolomics-based UPLC/Q-TOF MS/MS and multivariate statistical analysis was performed to identify the alterations in metabolites associated with calcium deficiency in rats. Results Bone mineral density, serum parathyroid hormone and alkaline phosphatase were significantly decreased in the low-calcium diet group (LCG) compared to the normal calcium diet group (NCG). Serum metabolic-profiling analysis could definitively distinguish between the LCG and NCG andidentified25 calcium-deficient biomarkers. Three metabolites (indoxyl sulfate, phosphate, and taurine) of the 25 biomarkers were found in our previous urinary metabolomics study of rats with a calcium deficiency and nutritional rickets. The areas under the curve (AUCs) of these three biomarkers were greater than 0.8, and the combination of any two biomarkers was higher than 0.95. Conclusion Dietary calcium deficiency induced the alterations of metabolites in the serum of rats, and the three identified biomarkers had relatively high diagnostic values for calcium deficiency in rats.


2019 ◽  
Author(s):  
Fanyu Meng ◽  
Lina Fan ◽  
Lin Sun ◽  
Qingli Yu ◽  
Maoqing Wang ◽  
...  

Abstract Background: We previously identified the urinary biomarkers to diagnose calcium deficiency and nutritional rickets by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS/MS).To further confirm these biomarkers in vivo, we performed serum metabolomics analysis of calcium deficiency. Methods: A calcium-deficient rat model was established with a low-calcium diet for 12 weeks. Serum-metabolomics-based UPLC/Q-TOF MS/MS and multivariate statistical analysis was performed to identify the alterations in metabolites associated with calcium deficiency in rats. Results: Bone mineral density, serum parathyroid hormone and alkaline phosphatase were significantly decreased in the low-calcium diet group (LCG) compared to the normal calcium diet group (NCG). Serum metabolic-profiling analysis could definitively distinguish between the LCG and NCG and identified25 calcium-deficient biomarkers. Three metabolites (indoxyl sulfate, phosphate, and taurine) of the 25 biomarkers were found in our previous urinary metabolomics study of rats with a calcium deficiency and nutritional rickets. The areas under the curve (AUCs) of these three biomarkers were greater than 0.8, and the combination of any two biomarkers was higher than 0.95. Conclusion: Dietary calcium deficiency induced the alterations of metabolites in the serum of rats, and the three identified biomarkers had relatively high diagnostic values for calcium deficiency in rats.


1964 ◽  
Vol 116 (3) ◽  
pp. 651-653 ◽  
Author(s):  
G. A. Williams ◽  
W. J. Henderson ◽  
E. N. Bowser

2020 ◽  
Author(s):  
Meng Fanyu ◽  
Fan Lina ◽  
Sun Lin ◽  
Yu Qingli ◽  
Maoqing Wang ◽  
...  

Abstract Background We previously identified the urinary biomarkers to diagnose calcium deficiency and nutritional rickets by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS/MS).To further confirm these biomarkers in vivo, we performed serum metabolomics analysis of calcium deficiency. Methods A calcium-deficient rat model was established with a low-calcium diet for 12 weeks. Serum-metabolomics-based UPLC/Q-TOF MS/MS and multivariate statistical analysis was performed to identify the alterations in metabolites associated with calcium deficiency in rats. Results Bone mineral density, serum parathyroid hormone and alkaline phosphatase were significantly decreased in the low-calcium diet group (LCG) compared to the normal calcium diet group (NCG). Serum metabolic-profiling analysis could definitively distinguish between the LCG and NCG andidentified25 calcium-deficient biomarkers. Three metabolites (indoxyl sulfate, phosphate, and taurine) of the 25 biomarkers were found in our previous urinary metabolomics study of rats with a calcium deficiency and nutritional rickets. The areas under the curve (AUCs) of these three biomarkers were greater than 0.8, and the combination of any two biomarkers was higher than 0.95. Conclusion Dietary calcium deficiency induced the alterations of metabolites in the serum of rats, and the three identified biomarkers had relatively high diagnostic values for calcium deficiency in rats.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhengwang Yu ◽  
Jie Huang ◽  
Zhongxin Zhou

AbstractCage layer osteoporosis (CLO) is a common bone metabolism disease in the breeding industry of China. However, effective prevention for CLO has not been developed. Icariin (ICA), the main bioactive component of the Chinese herb Epimedium, has been shown to have good therapeutic effects on bone-related diseases. In this study, the effects of ICA were further evaluated in a low-calcium diet-induced CLO, and a serum metabolomics assay was performed to understand the underlying mechanisms. A total of 144 31-wk-old Lohmann pink-shell laying hens were randomly allocated to 4 groups with 6 replicates of 6 hens per replicate. The 4 dietary treatment groups consisted of a basal diet (3.5% calcium), a low-calcium diet (2.0% calcium), and a low-calcium diet supplemented with 0.5 or 2.0 g/kg ICA. The results showed that ICA exerted good osteoprotective effects on low-calcium diet-induced CLO. ICA significantly increased femur bone mineral density, improved bone microstructure, decreased bone metabolic level, and upregulated mRNA expression of bone formation genes in femoral bone tissue. Serum untargeted metabolomics analysis showed that 8 metabolite levels were significantly changed after ICA treatment, including increased contents of 7-dehydrocholesterol, 7-oxocholesterol, desmosterol, PC (18:1(9Z)/18:1(9Z)), PS (18:0/18:1(9Z)), N,N-dimethylaniline and 2-hydroxy-butanoic acid and decreased N2,N2-dimethylguanosine. Metabolic pathway analysis based on the above 8 metabolites indicated that ICA mainly perturbed steroid biosynthesis and glycerophospholipid metabolism. These findings suggest that ICA can effectively prevent bone loss in low-calcium diet-induced CLO by mediating steroid biosynthesis and glycerophospholipid metabolism and provide new information for the regulation of bone metabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document