Acute effect of parathyroid hormone-(1–34) fragment on blood pressure in rats fed a low calcium diet

1990 ◽  
Vol 21 (4) ◽  
pp. 547-549 ◽  
Author(s):  
Akifumi Togari ◽  
Sumio Shintani ◽  
Michitsugu Arai ◽  
Shosei Matsumoto ◽  
Toshiharu Nagatsu
Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1112 ◽  
Author(s):  
Cecilia Villa-Etchegoyen ◽  
Mercedes Lombarte ◽  
Natalia Matamoros ◽  
José M. Belizán ◽  
Gabriela Cormick

There is increasing epidemiologic and animal evidence that a low calcium diet increases blood pressure. The aim of this review is to compile the information on the link between low calcium intake and blood pressure. Calcium intake may regulate blood pressure by modifying intracellular calcium in vascular smooth muscle cells and by varying vascular volume through the renin–angiotensin–aldosterone system. Low calcium intake produces a rise of parathyroid gland activity. The parathyroid hormone increases intracellular calcium in vascular smooth muscles resulting in vasoconstriction. Parathyroidectomized animals did not show an increase in blood pressure when fed a low calcium diet as did sham-operated animals. Low calcium intake also increases the synthesis of calcitriol in a direct manner or mediated by parathyroid hormone (PTH). Calcitriol increases intracellular calcium in vascular smooth muscle cells. Both low calcium intake and PTH may stimulate renin release and consequently angiotensin II and aldosterone synthesis. We are willing with this review to promote discussions and contributions to achieve a better understanding of these mechanisms, and if required, the design of future studies.


1997 ◽  
Vol 93 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Piergiorgio Messa ◽  
Martino Marangella ◽  
Luisa Paganin ◽  
Mara Codardini ◽  
Aldo Cruciatti ◽  
...  

1. Dietary calcium restriction, an efficient practice in reducing urinary calcium excretion, has been reported to induce either an increase or no change in oxalate excretion, questioning its use in hypercalciuric stone-forming patients. In addition, calcium restriction has been previously demonstrated to induce other urinary changes which might influence the relative supersaturation of calcium oxalate. So the overall effect of calcium deprivation on the relative supersaturation of calcium oxalate is unpredictable. 2. The aim of the study was to evaluate the effect of dietary calcium restriction on the relative supersaturation of calcium oxalate in the urine of stone-forming patients utilizing a computer methodology which takes into account the main soluble complex species of oxalate. 3. We studied 34 stone-forming patients on both a free-choice diet, whose Ca and oxalate content (24 and 1.2 mmol respectively) was assessed by dietary inquiry, and after 30 days on a prescribed low-calcium and normal oxalate diet (11 and 1.1 mmol respectively). Under both conditions, the excretion of the main urinary parameters related to dietary composition, electrolytes, oxalate and daily citrate urinary excretion, were measured. The relative supersaturation of calcium oxalate was calculated by means of an iterative computer method which takes into account the main soluble complex species on which the solubility of calcium oxalate is dependent. In addition, intact parathyroid hormone and 1,25-dihydroxyvitamin D blood levels were also evaluated. In 13 of the patients intestinal calcium absorption was evaluated during both a free- and a low-calcium diet, utilizing kinetics methodology. 4. The low-calcium diet induced, together with an expected reduction of calcium excretion, a marked increase in oxalate urinary output. This finding was independent of the presence or otherwise of hypercalciuria and of the serum levels of parathyroid hormone and vitamin D. Intestinal calcium absorption was also stimulated by calcium deprivation and its levels were well correlated with oxalate excretion. Minor changes in magnesium and citrate excretion were also observed. The overall effect on the relative supersaturation of calcium oxalate consisted in a substantial increase in this parameter during the low-calcium diet. 5. In conclusion, our data reinforce the concept that dietary calcium restriction has potentially deleterious effects on lithogenesis, by increasing the relative supersaturation of calcium oxalate.


1989 ◽  
Vol 38 (6) ◽  
pp. 889-893 ◽  
Author(s):  
Togari Akifumi ◽  
Arai Michitsugu ◽  
Shamoto Takahiro ◽  
Matsumoto Shosei ◽  
Nagatsu Toshiharu

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhengwang Yu ◽  
Jie Huang ◽  
Zhongxin Zhou

AbstractCage layer osteoporosis (CLO) is a common bone metabolism disease in the breeding industry of China. However, effective prevention for CLO has not been developed. Icariin (ICA), the main bioactive component of the Chinese herb Epimedium, has been shown to have good therapeutic effects on bone-related diseases. In this study, the effects of ICA were further evaluated in a low-calcium diet-induced CLO, and a serum metabolomics assay was performed to understand the underlying mechanisms. A total of 144 31-wk-old Lohmann pink-shell laying hens were randomly allocated to 4 groups with 6 replicates of 6 hens per replicate. The 4 dietary treatment groups consisted of a basal diet (3.5% calcium), a low-calcium diet (2.0% calcium), and a low-calcium diet supplemented with 0.5 or 2.0 g/kg ICA. The results showed that ICA exerted good osteoprotective effects on low-calcium diet-induced CLO. ICA significantly increased femur bone mineral density, improved bone microstructure, decreased bone metabolic level, and upregulated mRNA expression of bone formation genes in femoral bone tissue. Serum untargeted metabolomics analysis showed that 8 metabolite levels were significantly changed after ICA treatment, including increased contents of 7-dehydrocholesterol, 7-oxocholesterol, desmosterol, PC (18:1(9Z)/18:1(9Z)), PS (18:0/18:1(9Z)), N,N-dimethylaniline and 2-hydroxy-butanoic acid and decreased N2,N2-dimethylguanosine. Metabolic pathway analysis based on the above 8 metabolites indicated that ICA mainly perturbed steroid biosynthesis and glycerophospholipid metabolism. These findings suggest that ICA can effectively prevent bone loss in low-calcium diet-induced CLO by mediating steroid biosynthesis and glycerophospholipid metabolism and provide new information for the regulation of bone metabolic diseases.


Hypertension ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 1154-1159 ◽  
Author(s):  
Rolf Jorde ◽  
Johan Sundsfjord ◽  
Egil Haug ◽  
Kaare H. Bønaa

Sign in / Sign up

Export Citation Format

Share Document