Computer modelling of underground CO2 storage

1996 ◽  
Vol 37 (6-8) ◽  
pp. 1155-1160 ◽  
Author(s):  
L.G.H. van der Meer
2020 ◽  
Vol 60 (2) ◽  
pp. 662
Author(s):  
Saira ◽  
Furqan Le-Hussain

Oil recovery and CO2 storage related to CO2 enhance oil recovery are dependent on CO2 miscibility. In case of a depleted oil reservoir, reservoir pressure is not sufficient to achieve miscible or near-miscible condition. This extended abstract presents numerical studies to delineate the effect of alcohol-treated CO2 injection on enhancing miscibility, CO2 storage and oil recovery at immiscible and near-miscible conditions. A compositional reservoir simulator from Computer Modelling Group Ltd. was used to examine the effect of alcohol-treated CO2 on the recovery mechanism. A SPE-5 3D model was used to simulate oil recovery and CO2 storage at field scale for two sets of fluid pairs: (1) pure CO2 and decane and (2) alcohol-treated CO2 and decane. Alcohol-treated CO2 consisted of a mixture of 4 wt% of ethanol and 96 wt% of CO2. All simulations were run at constant temperature (70°C), whereas pressures were determined using a pressure-volume-temperature simulator for immiscible (1400 psi) and near-miscible (1780 psi) conditions. Simulation results reveal that alcohol-treated CO2 injection is found superior to pure CO2 injection in oil recovery (5–9%) and CO2 storage efficiency (4–6%). It shows that alcohol-treated CO2 improves CO2 sweep efficiency. However, improvement in sweep efficiency with alcohol-treated CO2 is more pronounced at higher pressures, whereas improvement in displacement efficiency is more pronounced at lower pressures. The proposed methodology has potential to enhance the feasibility of CO2 sequestration in depleted oil reservoirs and improve both displacement and sweep efficiency of CO2.


Author(s):  
C Ukaegbu ◽  
O Gundogan ◽  
E Mackay ◽  
G Pickup ◽  
A Todd ◽  
...  

The fate of carbon dioxide (CO2) injected into a deep saline aquifer depends largely on the geological structure within the aquifer. For example, low permeability layers, such as shales or mudstones, will act as barriers to vertical flow of CO2 gas, whereas high permeability channels may assist the lateral migration of CO2. It is therefore important to include permeability heterogeneity in models for numerical flow simulation As an example of a heterogeneous system, a model of fluvial-incised valley deposits was used. Flow simulations were performed using the generalized equation-of-state model—greenhouse gas software package from Computer Modelling Group, which is a compositional simulator, specially adapted for CO2 storage. The impacts of residual gas and water saturations, gas diffusion in the aqueous phase, hysteresis, and permeability anisotropy on the distribution of CO2 between the gaseous and aqueous phases were examined. Gas diffusion in the aqueous phase was found to significantly enhance solubility trapping of CO2, even when hysteretic trapping of CO2 as a residual phase is taken into account.


2015 ◽  
Vol 6 (2) ◽  
pp. 89-93
Author(s):  
S. Bodzás ◽  
I. Dudás

The objectives of this publication are the analysis of surfaces and edges of a new geometric spiroid hob with arched profile in axial section and the definition of their equations for computer modelling. On the basis of this we will work out the CAD model of hob for our further geometric calculations.


2018 ◽  
Vol 3 (2) ◽  
pp. 207-216 ◽  
Author(s):  
David Fisher ◽  
Lionel Sims

Claims first made over half a century ago that certain prehistoric monuments utilised high-precision alignments on the horizon risings and settings of the Sun and the Moon have recently resurfaced. While archaeoastronomy early on retreated from these claims, as a way to preserve the discipline in an academic boundary dispute, it did so without a rigorous examination of Thom’s concept of a “lunar standstill”. Gough’s uncritical resurrection of Thom’s usage of the term provides a long-overdue opportunity for the discipline to correct this slippage. Gough (2013), in keeping with Thom (1971), claims that certain standing stones and short stone rows point to distant horizon features which allow high-precision alignments on the risings and settings of the Sun and the Moon dating from about 1700 BC. To assist archaeoastronomy in breaking out of its interpretive rut and from “going round in circles” (Ruggles 2011), this paper evaluates the validity of this claim. Through computer modelling, the celestial mechanics of horizon alignments are here explored in their landscape context with a view to testing the very possibility of high-precision alignments to the lunar extremes. It is found that, due to the motion of the Moon on the horizon, only low-precision alignments are feasible, which would seem to indicate that the properties of lunar standstills could not have included high-precision markers for prehistoric megalith builders.


2019 ◽  
Author(s):  
Kristina Eriksen ◽  
Bjarne Nielsen ◽  
Michael Pittelkow

<p>We present a simple procedure to make an augmented reality app to visualize any 3D chemical model. The molecular structure may be based on data from crystallographic data or from computer modelling. This guide is made in such a way, that no programming skills are needed and the procedure uses free software and is a way to visualize 3D structures that are normally difficult to comprehend in the 2D space of paper. The process can be applied to make 3D representation of any 2D object, and we envisage the app to be useful when visualizing simple stereochemical problems, when presenting a complex 3D structure on a poster presentation or even in audio-visual presentations. The method works for all molecules including small molecules, supramolecular structures, MOFs and biomacromolecules.</p>


2020 ◽  
Vol 4 (2) ◽  
pp. 210-229
Author(s):  
R.F. Bulgakov ◽  
◽  
V.V. Afanas’ev ◽  
E.I. Ignatov ◽  
◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document