Short time-series measurements of particulate organic carbon flux and sediment community oxygen consumption in the North Pacific

1989 ◽  
Vol 36 (7) ◽  
pp. 1111-1119 ◽  
Author(s):  
K.L. Smith
2012 ◽  
Vol 3 (2) ◽  
pp. 1347-1389
Author(s):  
R. Séférian ◽  
L. Bopp ◽  
D. Swingedouw ◽  
J. Servonnat

Abstract. Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear if detected changes over the recent time period can really be attributed to anthropogenic climate change or to natural climate variability (internal plus naturally forced variability). One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000-yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20-yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterized by decadal to multi-decadal modes of variability (10 to 50 yr) that account for 30–40% of the interannual regional variance. But these modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.


2010 ◽  
Vol 23 (10) ◽  
pp. 2473-2491 ◽  
Author(s):  
Mark T. Stoelinga ◽  
Mark D. Albright ◽  
Clifford F. Mass

Abstract This study examines the changes in Cascade Mountain spring snowpack since 1930. Three new time series facilitate this analysis: a water-balance estimate of Cascade snowpack from 1930 to 2007 that extends the observational record 20 years earlier than standard snowpack measurements; a radiosonde-based time series of lower-tropospheric temperature during onshore flow, to which Cascade snowpack is well correlated; and a new index of the North Pacific sea level pressure pattern that encapsulates modes of variability to which Cascade spring snowpack is particularly sensitive. Cascade spring snowpack declined 23% during 1930–2007. This loss is nearly statistically significant at the 5% level. The snowpack increased 19% during the recent period of most rapid global warming (1976–2007), though this change is not statistically significant because of large annual variability. From 1950 to 1997, a large and statistically significant decline of 48% occurred. However, 80% of this decline is connected to changes in the circulation patterns over the North Pacific Ocean that vary naturally on annual to interdecadal time scales. The residual time series of Cascade snowpack after Pacific variability is removed displays a relatively steady loss rate of 2.0% decade−1, yielding a loss of 16% from 1930 to 2007. This loss is very nearly statistically significant and includes the possible impacts of anthropogenic global warming. The dates of maximum snowpack and 90% melt out have shifted 5 days earlier since 1930. Both shifts are statistically insignificant. A new estimate of the sensitivity of Cascade spring snowpack to temperature of −11% per °C, when combined with climate model projections of 850-hPa temperatures offshore of the Pacific Northwest, yields a projected 9% loss of Cascade spring snowpack due to anthropogenic global warming between 1985 and 2025.


2019 ◽  
Vol 199 ◽  
pp. 163-178 ◽  
Author(s):  
G. V. Khen ◽  
E. I. Ustinova ◽  
Yu. D. Sorokin

The study is continuing, which first results were published in 2019 [Khen et al., 2019]. The main patterns of long-term variability are considered for selected climate indices in the North Pacific and links between them are identified on the common methodological basis. The following indices are analyzed: AO (Arctic Oscillation), PDO (Pacific Decadal Oscillation), Nino 3.4 (index of El-Nino — South Oscillation), ALPI (Aleutian Low Pressure index), NPI (North Pacific index), PNA (Pacific/North American index), SHI (Siberian High index), and WP (West Pacific index). Their time-series are provided on websites of the world climate centers, with exception of the Siberian High index that was calculated from the reanalysis data on the sea level pressure provided by the USA National Center for Environmental Prediction (NCEP) — National Center for Atmospheric Research (NCAR) for 1950–2018. Data were analysed using standard statistical methods. Regime shifts are detected using Rodionov’s method of sequential regime shift detection including the regime shift index (RSI) and tools of automatic detection of the regime shifts with improved performance at the ends of time series. Variations of all indices since the middle 20th century correspond to warming that is not monotonous but combines phases of quick transition from one climatic regime to another — climate shifts and periods of relatively stable state between them. The most important climate shifts happened in 1977 and 1989 and they were noted for majority of the considered indices. Values of the indices heightened in the former shift and slightly lowered in the latter one, except of NPI that had opposite changes. PDO, WP and NPI had another positive shift in the recent years (2015–2017) that allows to assume transition to a new climate regime which will be warmer than the previous one in the last two decades. Long-term periodicity coincided with the 19-year cycle of lunar declination is revealed for PDO, ALPI, NPI and PNA; its spectral power amplifies considerably after removing of high-frequency variability by running 5-year averaging of the time series. Nino 3.4 showed a prominent 11-year cycle, possibly associated with the solar activity. SHI, AO and WP changed with periods about two decades: the main frequency is 26 years for SHI, 20 years for AO, and 17 years for WP, but the peaks of spectral power for the two latter indices is low, i.e. non-periodic oscillations dominate for them. Secondary peaks of spectral power are much lower than the main ones, they correspond to cycles of 7–8 years for AO and PDO, 11 years for WP, and 15 years for SHI. The indices of the North Pacific quartette (PDO, ALPI, NPI and PNA) are closely related between each other with high correlation coefficients (0.67–0.96). The Nino 3.4 index is also linked with them, but with lower correlation (0.45–0.56). SHI has statistically significant relationship with AO only, and WP correlates with Nino 3.4. Contribution of the large-scale climate processes to environmental variability in the Far-Eastern Seas of Russia and the Northwestern Pacific will be considered in the next issue.


2021 ◽  
Author(s):  
Alyse Larkin ◽  
Allison Moreno ◽  
Adam Fagan ◽  
Adam Martiny

<p>From 2014 through 2016, a significant El Niño event and the North Pacific warm anomaly (a.k.a., “the blob”) resulted in a marine heatwave across the Eastern North Pacific Ocean. To develop a deeper understanding of the impacts of El Niño on the Southern California Bight (SCB), we used coastal cyanobacteria populations in order to “bi-directionally” link shifts in microbial diversity and biogeochemical conditions. We sequenced the <em>rpo</em>C1 gene from the ecologically important picocyanobacteria <em>Prochlorococcus</em> and <em>Synechococcus</em> at 434 time points from 2009–2018 in the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase in the abundance of <em>Prochlorococcus</em> relative to <em>Synechococcus</em> as well as elevated frequencies of clades commonly associated with low-nutrient and high-temperature conditions. The relationships between environmental and diversity trends appeared to operate on differing temporal scales. In addition, microdiverse populations from the <em>Prochlorococcous</em> HLI clade as well as <em>Synechococcus</em> Clade II that shifted in response to the 2015 El Niño did not return to their pre-heatwave composition by the end of this study. This research demonstrates that El Niño-driven warming in the SCB can result in persistent changes in key microbial populations.</p>


2005 ◽  
Vol 22 (11) ◽  
pp. 1762-1781 ◽  
Author(s):  
Bruno Buongiorno Nardelli ◽  
Rosalia Santoleri

Abstract Different methods for the extrapolation of vertical profiles from sea surface measurements have been tested on 14 yr of conductivity–temperature–depth (CTD) data collected within the Hawaii Ocean Time-series (HOT) program at A Long-Term Oligotrophic Habitat Assessment (ALOHA) station in the North Pacific Ocean. A new technique, called multivariate EOF reconstruction (mEOF-R), has been proposed. The mEOF-R technique is similar to the previously developed coupled pattern reconstruction (CPR) technique and relies on the availability of surface measurements and historical profiles of salinity, temperature, and steric heights. The method is based on the multivariate EOF analysis of the vertical profiles of the three parameters and on the assumption that only a few modes are needed to explain most of the variance/covariance of the fields. The performances of CPR, single EOF reconstruction (sEOF-R), and mEOF-R have been compared with the results of residual GEM techniques and with ad hoc climatologies, stressing the potential of each method in relation to the length of the time series used to train the models and to the accuracy expected from planned satellite missions for the measurement of surface salinity, sea level, and temperature. The mEOF-R method generally produces the most reliable estimates (in the worst cases comparable to the climatologies) and seems to be slightly less susceptible to errors in the surface input. Multivariate EOF analysis of HOT data also gave by itself interesting results, being able to discriminate the three major signals driving the temporal variability in the area.


Sign in / Sign up

Export Citation Format

Share Document