scholarly journals VARIABILITY AND INTERRELATION OF THE BASIC CLIMATE INDICES FOR THE NORTH PACIFIC: TRENDS, CLIMATE SHIFTS, SPECTRA, CORRELATIONS

2019 ◽  
Vol 199 ◽  
pp. 163-178 ◽  
Author(s):  
G. V. Khen ◽  
E. I. Ustinova ◽  
Yu. D. Sorokin

The study is continuing, which first results were published in 2019 [Khen et al., 2019]. The main patterns of long-term variability are considered for selected climate indices in the North Pacific and links between them are identified on the common methodological basis. The following indices are analyzed: AO (Arctic Oscillation), PDO (Pacific Decadal Oscillation), Nino 3.4 (index of El-Nino — South Oscillation), ALPI (Aleutian Low Pressure index), NPI (North Pacific index), PNA (Pacific/North American index), SHI (Siberian High index), and WP (West Pacific index). Their time-series are provided on websites of the world climate centers, with exception of the Siberian High index that was calculated from the reanalysis data on the sea level pressure provided by the USA National Center for Environmental Prediction (NCEP) — National Center for Atmospheric Research (NCAR) for 1950–2018. Data were analysed using standard statistical methods. Regime shifts are detected using Rodionov’s method of sequential regime shift detection including the regime shift index (RSI) and tools of automatic detection of the regime shifts with improved performance at the ends of time series. Variations of all indices since the middle 20th century correspond to warming that is not monotonous but combines phases of quick transition from one climatic regime to another — climate shifts and periods of relatively stable state between them. The most important climate shifts happened in 1977 and 1989 and they were noted for majority of the considered indices. Values of the indices heightened in the former shift and slightly lowered in the latter one, except of NPI that had opposite changes. PDO, WP and NPI had another positive shift in the recent years (2015–2017) that allows to assume transition to a new climate regime which will be warmer than the previous one in the last two decades. Long-term periodicity coincided with the 19-year cycle of lunar declination is revealed for PDO, ALPI, NPI and PNA; its spectral power amplifies considerably after removing of high-frequency variability by running 5-year averaging of the time series. Nino 3.4 showed a prominent 11-year cycle, possibly associated with the solar activity. SHI, AO and WP changed with periods about two decades: the main frequency is 26 years for SHI, 20 years for AO, and 17 years for WP, but the peaks of spectral power for the two latter indices is low, i.e. non-periodic oscillations dominate for them. Secondary peaks of spectral power are much lower than the main ones, they correspond to cycles of 7–8 years for AO and PDO, 11 years for WP, and 15 years for SHI. The indices of the North Pacific quartette (PDO, ALPI, NPI and PNA) are closely related between each other with high correlation coefficients (0.67–0.96). The Nino 3.4 index is also linked with them, but with lower correlation (0.45–0.56). SHI has statistically significant relationship with AO only, and WP correlates with Nino 3.4. Contribution of the large-scale climate processes to environmental variability in the Far-Eastern Seas of Russia and the Northwestern Pacific will be considered in the next issue.

2021 ◽  
Vol 8 ◽  
Author(s):  
Shuangling Chen ◽  
Adrienne J. Sutton ◽  
Chuanmin Hu ◽  
Fei Chai

Despite the well-recognized importance in understanding the long term impact of anthropogenic release of atmospheric CO2 (its partial pressure named as pCO2air) on surface seawater pCO2 (pCO2sw), it has been difficult to quantify the trends or changing rates of pCO2sw driven by increasing atmospheric CO2 forcing (pCO2swatm_forced) due to its combination with the natural variability of pCO2sw (pCO2swnat_forced) and the requirement of long time series data records. Here, using a novel satellite-based pCO2sw model with inputs of ocean color and other ancillary data between 2002 and 2019, we address this challenge for a mooring station at the Hawaii Ocean Time-series Station in the North Pacific subtropical gyre. Specifically, using the developed pCO2sw model, we differentiated and separately quantified the interannual-decadal trends of pCO2swnat_forced and pCO2swatm_forced. Between 2002 and 2019, both pCO2sw and pCO2air show significant increases at rates of 1.7 ± 0.1 μatm yr–1 and 2.2 ± 0.1 μatm yr–1, respectively. Correspondingly, the changing rate in pCO2swnat_forced is mainly driven by large scale forcing such as Pacific Decadal Oscillation, with a negative rate (-0.5 ± 0.2 μatm yr–1) and a positive rate (0.6 ± 0.3 μatm yr–1) before and after 2013. The pCO2swatm_forced shows a smaller increasing rate of 1.4 ± 0.1 μatm yr–1 than that of the modeled pCO2sw, varying in different time intervals in response to the variations in atmospheric pCO2. The findings of decoupled trends in pCO2swatm_forced and pCO2swnat_forced highlight the necessity to differentiate the two toward a better understanding of the long term oceanic absorption of anthropogenic CO2 and the anthropogenic impact on the changing surface ocean carbonic chemistry.


Science ◽  
2014 ◽  
Vol 346 (6213) ◽  
pp. 1102-1106 ◽  
Author(s):  
Il-Nam Kim ◽  
Kitack Lee ◽  
Nicolas Gruber ◽  
David M. Karl ◽  
John L. Bullister ◽  
...  

The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (∼0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.


2010 ◽  
Vol 23 (10) ◽  
pp. 2473-2491 ◽  
Author(s):  
Mark T. Stoelinga ◽  
Mark D. Albright ◽  
Clifford F. Mass

Abstract This study examines the changes in Cascade Mountain spring snowpack since 1930. Three new time series facilitate this analysis: a water-balance estimate of Cascade snowpack from 1930 to 2007 that extends the observational record 20 years earlier than standard snowpack measurements; a radiosonde-based time series of lower-tropospheric temperature during onshore flow, to which Cascade snowpack is well correlated; and a new index of the North Pacific sea level pressure pattern that encapsulates modes of variability to which Cascade spring snowpack is particularly sensitive. Cascade spring snowpack declined 23% during 1930–2007. This loss is nearly statistically significant at the 5% level. The snowpack increased 19% during the recent period of most rapid global warming (1976–2007), though this change is not statistically significant because of large annual variability. From 1950 to 1997, a large and statistically significant decline of 48% occurred. However, 80% of this decline is connected to changes in the circulation patterns over the North Pacific Ocean that vary naturally on annual to interdecadal time scales. The residual time series of Cascade snowpack after Pacific variability is removed displays a relatively steady loss rate of 2.0% decade−1, yielding a loss of 16% from 1930 to 2007. This loss is very nearly statistically significant and includes the possible impacts of anthropogenic global warming. The dates of maximum snowpack and 90% melt out have shifted 5 days earlier since 1930. Both shifts are statistically insignificant. A new estimate of the sensitivity of Cascade spring snowpack to temperature of −11% per °C, when combined with climate model projections of 850-hPa temperatures offshore of the Pacific Northwest, yields a projected 9% loss of Cascade spring snowpack due to anthropogenic global warming between 1985 and 2025.


2011 ◽  
Vol 68 (6) ◽  
pp. 1131-1137 ◽  
Author(s):  
Masa-aki Fukuwaka ◽  
Toshiki Kaga ◽  
Tomonori Azumaya

Abstract Fukuwaka, M., Kaga, T., and Azumaya, T. 2011. Regional differences in climate factors controlling chum and pink salmon abundance. – ICES Journal of Marine Science, 68: 1131–1137. Chum and pink salmon abundances vary on a decadal time-scale. We examined the relationship between large-scale climate indices (CIs), regional climate factors (RFs), and rates of change in regional catches (RCs) of chum and pink salmon in five regions of the North Pacific. Correlation coefficients of RCs with RFs were larger than those of RCs with CIs, although the correlation coefficient of particular variables varied among regions. Climate affected salmon stocks as indicated by significant relationships with various terrestrial and ocean climate factors on a regional scale. These results suggest that no single CI or RF controls salmon abundance in all regions; however, global climate changes could affect regional climate directly and regional salmon abundance indirectly. A warming trend in the North Pacific might affect the long-term change in salmon abundance. The mechanisms controlling regional salmon abundance must be understood better to forecast successfully future conditions for Pacific salmon stocks, because the response of salmon stocks to global climate change varies among regions.


1999 ◽  
Vol 56 (2) ◽  
pp. 242-252 ◽  
Author(s):  
William G Clark ◽  
Steven R Hare ◽  
Ana M Parma ◽  
Patrick J Sullivan ◽  
Robert J Trumble

Since the climate regime shift of 1976-1977 in the North Pacific, the individual growth of Pacific halibut (Hippoglossus stenolepis) has decreased dramatically in Alaska but not in British Columbia. Recruitment has increased dramatically in both areas. The decrease in age-specific vulnerability to commercial longline gear resulted in a persistent underestimation of incoming recruitment by the age-structured assessment method (CAGEAN) that was used to assess the stock. This problem has been corrected by adding temporal trends in growth and fishery selectivity to the assessment model. The recent sustained high level of recruitment at high levels of spawning biomass has erased the previous appearance of strong density dependence in the stock-recruitment relationship and prompted a reduction in the target full-recruitment harvest rate from 30-35 to 20-25%. The climate regime shift affected a number of other stocks of vertebrates and invertebrates in the North Pacific. While the general oceanographic changes have now been identified, the specific biological mechanisms responsible for the observed changes have not.


Sign in / Sign up

Export Citation Format

Share Document