Vibration and buckling of thin-Walled structures by a new finite strip

1995 ◽  
Vol 21 (4) ◽  
pp. 327-343 ◽  
Author(s):  
Y.K. Cheung ◽  
Jackson Kong
Author(s):  
Andrzej Garstecki ◽  
Witold Kakol

Abstract Structural Sensitivity Analysis is performed using the direct differentiation method for buckling and free vibration problems of prismatic thin-walled structures employing the Finite Strip Method. The sensitivity of eigenvalues (critical stresses and free frequencies) with respect to variation of thickness of plate members and with respect to shape-type variations is considered. The differentiation is carried out employing analytical and semi-analytical methods. Numerical examples illustrate the sensitivity of thin-walled plates stiffened with ribs and thin-walled beams. The examples also serve for discussion of numerical efficiency and accuracy of the presented methods.


Author(s):  
Umesh Gandhi ◽  
Stephane Roussel ◽  
K. Furusu ◽  
T. Nakagawa

Thin walled parts of high strength steel, under compressive loads are likely to buckle locally, and then depending on geometry and material properties the section may continue to carry additional load. For the post buckling conditions the deformations are large but finite. Therefore we need to consider geometrical non linearity in the calculations. In this paper we are extending the linear finite strip element formulation to include geometrical non linearity. Method to derive secant and tangent stiffness matrix for non linear finite strip element is developed and then the element formulation is verified for inplane and center load on a plate using Newton Raphson solver. The new non linear finite strip element can be useful in estimating maximum load capacity (including post buckling) of thin walled structures from 2D data.


1984 ◽  
Vol 2 (1) ◽  
pp. 75-95 ◽  
Author(s):  
Ken P. Chong ◽  
Bin Lee ◽  
Panayiotis A. Lavdas

Sign in / Sign up

Export Citation Format

Share Document