Application of Finite Strip Method in Vehicle Design: Part 2 of 2—Post Buckling Analysis of Thin Walled Structures

Author(s):  
Umesh Gandhi ◽  
Stephane Roussel ◽  
K. Furusu ◽  
T. Nakagawa

Thin walled parts of high strength steel, under compressive loads are likely to buckle locally, and then depending on geometry and material properties the section may continue to carry additional load. For the post buckling conditions the deformations are large but finite. Therefore we need to consider geometrical non linearity in the calculations. In this paper we are extending the linear finite strip element formulation to include geometrical non linearity. Method to derive secant and tangent stiffness matrix for non linear finite strip element is developed and then the element formulation is verified for inplane and center load on a plate using Newton Raphson solver. The new non linear finite strip element can be useful in estimating maximum load capacity (including post buckling) of thin walled structures from 2D data.

2020 ◽  
Author(s):  
E. Carrera ◽  
◽  
A. Pagani ◽  
R. Augello

AbstractIn the framework of finite elements (FEs) applications, this paper proposes the use of the node-dependent kinematics (NDK) concept to the large deflection and post-buckling analysis of thin-walled metallic one-dimensional (1D) structures. Thin-walled structures could easily exhibit local phenomena which would require refinement of the kinematics in parts of them. This fact is particularly true whenever these thin structures undergo large deflection and post-buckling. FEs with kinematics uniform in each node could prove inappropriate or computationally expensive to solve these locally dependent deformations. The concept of NDK allows kinematics to be independent in each element node; therefore, the theory of structures changes continuously over the structural domain. NDK has been successfully applied to solve linear problems by the authors in previous works. It is herein extended to analyze in a computationally efficient manner nonlinear problems of beam-like structures. The unified 1D FE model in the framework of the Carrera Unified Formulation (CUF) is referred to. CUF allows introducing, at the node level, any theory/kinematics for the evaluation of the cross-sectional deformations of the thin-walled beam. A total Lagrangian formulation along with full Green–Lagrange strains and 2nd Piola Kirchhoff stresses are used. The resulting geometrical nonlinear equations are solved with the Newton–Raphson linearization and the arc-length type constraint. Thin-walled metallic structures are analyzed, with symmetric and asymmetric C-sections, subjected to transverse and compression loadings. Results show how FE models with NDK behave as well as their convenience with respect to the classical FE analysis with the same kinematics for the whole nodes. In particular, zones which undergo remarkable deformations demand high-order theories of structures, whereas a lower-order theory can be employed if no local phenomena occur: this is easily accomplished by NDK analysis. Remarkable advantages are shown in the analysis of thin-walled structures with transverse stiffeners.


2022 ◽  
Vol 202 ◽  
pp. 103696
Author(s):  
Pavan Kumar Asur Vijaya Kumar ◽  
Aamir Dean ◽  
Shahab Sahraee ◽  
Jose Reinoso ◽  
Marco Paggi

2018 ◽  
Vol 149 ◽  
pp. 01089
Author(s):  
Mahi Imene ◽  
Djafour Naoual ◽  
Djafour Mustapha

Thin-walled structures have an increasingly large and growing field of application in the engineering sector, the goal behind using this type of structure is efficiency in terms of resistance and cost, however the stability of its components (the thin walls) remains the first aspect of the behavior, and a primordial factor in the design process. The hot rolled sections are known by a consequent post-buckling reserve, cold-formed steel sections which are thin-walled elements also benefit, in this case, it seems essential to take into account the favorable effects of this reserve in to the verification procedure of the resistance with respect to the three modes of failures of this type of structure. The design method that takes into account this reserve of resistance is inevitably the effective width method. The direct strength method has been developed to improve the speed and efficiency of the design of thin-walled profiles. The latter mainly uses the buckling loads (for Local, Distortional and Global mode) obtained from a numerical analysis and the resistance curves calibrated experimentally to predict the ultimate load of the profile. Among those, the behavior of a set of Cshaped profiles (highly industrialized) is studied, this type of section is assumed to be very prone to modes of local and distortional instability. The outcome of this investigation revealed very relevant conclusions both scientifically and practically.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4742
Author(s):  
Tomasz Kopecki ◽  
Przemysław Mazurek ◽  
Łukasz Święch

This study presents the results of experimental research and numerical calculations regarding models of a typical torsion box fragment, which is a common thin-walled load-bearing structure used in aviation technology. A fragment of this structure corresponding to the spar wall was made using 3D printing. The examined system was subjected to twisting and underwent post-critical deformation. The research was aimed at determining the influence of the printing direction of the structure’s individual layers on the system stiffness. The experimental phase was supplemented by nonlinear numerical analyses of the models of the studied systems, taking into account the details of the structure mapping using the laminate concept. The purpose of the calculations was to determine the usefulness of the adopted method for modeling the examined structures by assessing the compliance of numerical solutions with the results of the experiment.


Sign in / Sign up

Export Citation Format

Share Document