Increased in-vivo expression of inducible cyclooxygenase-2 (Cox-2) in experimental alcoholic liver disease . Dept. Pathol., N.E. Deaconess Hosp. and Harvard Med. Sch. Boston, MA and *Cornell Med. Coll. and Anne Fisher Nutrition Ctr. at Strang Cancer Prev. Ctr; New York, NY

Hepatology ◽  
1995 ◽  
Vol 22 (4) ◽  
pp. A242
2001 ◽  
Vol 120 (5) ◽  
pp. A116-A116
Author(s):  
H SCHLEMMER ◽  
T SAWATZKI ◽  
I DORNACHER ◽  
S SAMMET ◽  
M HELLENSCHMIDT ◽  
...  

1983 ◽  
Vol 38 (6) ◽  
pp. 849-859 ◽  
Author(s):  
P R Mills ◽  
A Shenkin ◽  
R S Anthony ◽  
A S McLelland ◽  
A N Main ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Ira Widjiastuti ◽  
Widya Saraswati ◽  
Annisa Rahma

Background: Inflammation of the pulp can lead to elicit pain. Pain in inflammation is induced by the cyclooxygenase-2 enzyme (COX-2) which induces prostaglandin E2 (PGE2) resulting in pain. Pain in the pulp can be relieved by eugenol. In its application, eugenol is toxic to pulp fibroblasts. Due to the side effect, it is worth considering other biocompatible materials with minimal side effects, such as propolis. Flavonoids and phenolic acids that contained in propolis can inhibit COX-2. Therefore, an analysis outlined in the literature review is needed to examine the results of research related to the role of propolis as pulp pain relief by inhibiting COX-2 expression. Purpose: To analyze the role of propolis in pulp pain by inhibiting COX-2 expression. Reviews: Propolis extract that extracted by ethanol, water, and hydroalcohol has pain relief properties in the pulp by inhibiting COX-2 by directly binding to the COX-2 receptors and by reducing the production of proinflammatory cytokines which are COX-2 inducers, proven through in vivo, in vitro, and in silico studies in various target cell organs. Conclusion: Propolis extract has high prospect as inflammatory pain inhibitor in the pulp by inhibit COX-2 expression.


1997 ◽  
Vol 112 (3) ◽  
pp. 943-951 ◽  
Author(s):  
AA Nanji ◽  
L Miao ◽  
P Thomas ◽  
A Rahemtulla ◽  
S Khwaja ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A116
Author(s):  
Heinz-Peter Schlemmer ◽  
Tanja Sawatzki ◽  
Ines Dornacher ◽  
Steffen Sammet ◽  
Michael Hellenschmidt ◽  
...  

2012 ◽  
Vol 20 (11) ◽  
pp. 3410-3421 ◽  
Author(s):  
Torsten Kniess ◽  
Markus Laube ◽  
Ralf Bergmann ◽  
Fabian Sehn ◽  
Franziska Graf ◽  
...  

Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Taoyong Chen ◽  
Jun Guo ◽  
Mingjin Yang ◽  
Chaofeng Han ◽  
Minghui Zhang ◽  
...  

Abstract Migration of dendritic cells (DCs) into tissues and secondary lymphoid organs plays a crucial role in the initiation of innate and adaptive immunity. In this article, we show that cyclosporin A (CsA) impairs the migration of DCs both in vitro and in vivo. Exposure of DCs to clinical concentrations of CsA neither induces apoptosis nor alters development but does impair cytokine secretion, chemokine receptor expression, and migration. In vitro, CsA impairs the migration of mouse bone marrow–derived DCs toward macrophage inflammatory protein-3β (MIP-3β) and induces them to retain responsiveness to MIP-1α after lipopolysaccharide (LPS)–stimulated DC maturation, while in vivo administration of CsA inhibits the migration of DCs out of skin and into the secondary lymphoid organs. CsA impairs chemokine receptor and cyclooxygenase-2 (COX-2) expression normally triggered in LPS-stimulated DCs; administration of exogenous prostaglandin E2 (PGE2) reverses the effects of CsA on chemokine receptor expression and DC migration. Inhibition of nuclear factor–κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway signaling by CsA may be responsible for the CsA-mediated effects on the regulation of chemokine receptor and cyclooxygenase-2 (COX-2) expression. Impairment of DC migration due to inhibition of PGE2 production and regulation of chemokine receptor expression may contribute, in part, to CsA-mediated immunosuppression.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Garhett L. Wyatt ◽  
Lyndsey S. Crump ◽  
Chloe M. Young ◽  
Veronica M. Wessells ◽  
Cole M. McQueen ◽  
...  

Abstract Background Breast cancer is a leading cause of cancer-related death for women in the USA. Thus, there is an increasing need to investigate novel prognostic markers and therapeutic methods. Inflammation raises challenges in treating and preventing the spread of breast cancer. Specifically, the nuclear factor kappa b (NFκB) pathway contributes to cancer progression by stimulating proliferation and preventing apoptosis. One target gene of this pathway is PTGS2, which encodes for cyclooxygenase 2 (COX-2) and is upregulated in 40% of human breast carcinomas. COX-2 is an enzyme involved in the production of prostaglandins, which mediate inflammation. Here, we investigate the effect of Singleminded-2s (SIM2s), a transcriptional tumor suppressor that is implicated in inhibition of tumor growth and metastasis, in regulating NFκB signaling and COX-2. Methods For in vitro experiments, reporter luciferase assays were utilized in MCF7 cells to investigate promoter activity of NFκB and SIM2. Real-time PCR, immunoblotting, immunohistochemistry, and chromatin immunoprecipitation assays were performed in SUM159 and MCF7 cells. For in vivo experiments, MCF10DCIS.COM cells stably expressing SIM2s-FLAG or shPTGS2 were injected into SCID mice and subsequent tumors harvested for immunostaining and analysis. Results Our results reveal that SIM2 attenuates the activation of NFκB as measured using NFκB-luciferase reporter assay. Furthermore, immunostaining of lysates from breast cancer cells overexpressing SIM2s showed reduction in various NFκB signaling proteins, as well as pAkt, whereas knockdown of SIM2 revealed increases in NFκB signaling proteins and pAkt. Additionally, we show that NFκB signaling can act in a reciprocal manner to decrease expression of SIM2s. Likewise, suppressing NFκB translocation in DCIS.COM cells increased SIM2s expression. We also found that NFκB/p65 represses SIM2 in a dose-dependent manner, and when NFκB is suppressed, the effect on the SIM2 is negated. Additionally, our ChIP analysis confirms that NFκB/p65 binds directly to SIM2 promoter site and that the NFκB sites in the SIM2 promoter are required for NFκB-mediated suppression of SIM2s. Finally, overexpression of SIM2s decreases PTGS2 in vitro, and COX-2 staining in vivo while decreasing PTGS2 and/or COX-2 activity results in re-expression of SIM2. Conclusion Our findings identify a novel role for SIM2s in NFκB signaling and COX-2 expression.


Sign in / Sign up

Export Citation Format

Share Document