Phenotypic characterization of human biliary epithelial cells (BEC) in situ and in vitro . Liver Unit, University Hospital, Birmingham UK; *University of Padova, Italy. ?University of Navarra, Spain

Hepatology ◽  
1995 ◽  
Vol 22 (4) ◽  
pp. A414
Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Lourdes Mateos-Hernández ◽  
Natália Pipová ◽  
Eléonore Allain ◽  
Céline Henry ◽  
Clotilde Rouxel ◽  
...  

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Astia Rizki-Safitri ◽  
Marie Shinohara ◽  
Yasushi Miura ◽  
Mathieu Danoy ◽  
Minoru Tanaka ◽  
...  

1998 ◽  
Vol 17 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Shizuya Saika ◽  
Yoshiji Kawashima ◽  
Yuka Okada ◽  
Sai-Ichi Tanaka ◽  
Osamu Yamanaka ◽  
...  

2008 ◽  
Vol 295 (5) ◽  
pp. F1422-F1430 ◽  
Author(s):  
Jonathan H. Clarke ◽  
Piers C. Emson ◽  
Robin F. Irvine

PIP4Ks (type II phosphatidylinositol 4-phosphate kinases) are phosphatidylinositol 5-phosphate (PtdIns5P) 4-kinases, believed primarily to regulate cellular PtdIns5P levels. In this study, we investigated the expression, localization, and associated biological activity of the least-studied PIP4K isoform, PIP4Kγ. Quantitative RT-PCR and in situ hybridization revealed that compared with PIP4Kα and PIP4Kβ, PIP4Kγ is expressed at exceptionally high levels in the kidney, especially the cortex and outer medulla. A specific antibody was raised to PIP4Kγ, and immunohistochemistry with this and with antibodies to specific kidney cell markers showed a restricted expression, primarily distributed in epithelial cells in the thick ascending limb and in the intercalated cells of the collecting duct. In these cells, PIP4Kγ had a vesicular appearance, and transfection of kidney cell lines revealed a partial Golgi localization (primarily the matrix of the cis-Golgi) with an additional presence in an unidentified vesicular compartment. In contrast to PIP4Kα, bacterially expressed recombinant PIP4Kγ was completely inactive but did have the ability to associate with active PIP4Kα in vitro. Overall our data suggest that PIP4Kγ may have a function in the regulation of vesicular transport in specialized kidney epithelial cells.


1993 ◽  
Vol 4 (6) ◽  
pp. 342-345 ◽  
Author(s):  
S L Patrick ◽  
T C Wright ◽  
H E Fox ◽  
H S Ginsberg

Women are infected with HIV in increasing numbers; the predominant mode of spread is through heterosexual transmission. Little is known regarding the mechanism of HIV transit through the female genital tract. We investigated whether early passaage cervical epithelial cells could be directly infected with HIV-1LAI*. Virus production was measured using the reverse transcriptase (RT) assay and direct assay for syncytia-forming units. In-situ hybridization was performed on infected cervical cell cultures. Immunostaining was carried out using a monoclonal antibody to leukocyte common antigen (LCA). Virus was recovered in the supernatants of all infected cervical cultures. Localization of HIV infection using in-situ hybridization identified rare cells in the population which gave a strong signal. These infected cells had a lymphoid morphology and were also detected using immunostaining for LAC. Cervical epithelial cells were uninfected in this in vitro model; cells in this population which supported viral replication were most likely of the macrophage/monocyte lineage.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sandra Quilodrán-Vega ◽  
Leonardo Albarracin ◽  
Flavia Mansilla ◽  
Lorena Arce ◽  
Binghui Zhou ◽  
...  

Potential probiotic or immunobiotic effects of lactic acid bacteria (LAB) isolated from the milk of the South American camelid llama (Lama glama) have not been reported in published studies. The aim of the present work was to isolate beneficial LAB from llama milk that can be used as potential probiotics active against bacterial pathogens. LAB strains were isolated from llama milk samples. In vitro functional characterization of the strains was performed by evaluating the resistance against gastrointestinal conditions and inhibition of the pathogen growth. Additionally, the adhesive and immunomodulatory properties of the strains were assessed. The functional studies were complemented with a comparative genomic evaluation and in vivo studies in mice. Ligilactobacillus salivarius TUCO-L2 showed enhanced probiotic/immunobiotic potential compared to that of other tested strains. The TUCO-L2 strain was resistant to pH and high bile salt concentrations and demonstrated antimicrobial activity against Gram-negative intestinal pathogens and adhesion to mucins and epithelial cells. L. salivarius TUCO-L2 modulated the innate immune response triggered by Toll-like receptor (TLR)-4 activation in intestinal epithelial cells. This effect involved differential regulation of the expression of inflammatory cytokines and chemokines mediated by the modulation of the negative regulators of the TLR signaling pathway. Moreover, the TUCO-L2 strain enhanced the resistance of mice to Salmonella infection. This is the first report on the isolation and characterization of a potential probiotic/immunobiotic strain from llama milk. The in vitro, in vivo, and in silico investigation performed in this study reveals several research directions that are needed to characterize the TUCO-L2 strain in detail to position this strain as a probiotic or immunobiotic that can be used against infections in humans or animals, including llama.


2018 ◽  
Vol 36 (5) ◽  
pp. 280-287 ◽  
Author(s):  
Yun Zhu ◽  
Qian Wang ◽  
Xiaojun Tang ◽  
Genhong Yao ◽  
Lingyun Sun

Sign in / Sign up

Export Citation Format

Share Document