Thermal acclimation and metabolic rates in the dusky salamander Desmognathus fuscus

Author(s):  
Lloyd C Fitzpatrick ◽  
John R Bristol ◽  
Robert M Stokes
1959 ◽  
Vol 37 (3) ◽  
pp. 473-478 ◽  
Author(s):  
O. Héroux ◽  
F. Depocas ◽  
J. S. Hart

Physiological adjustments to cold temperature have been compared in white rats exposed either to the outdoor fluctuating environmental conditions or to the indoor constant temperature conditions. While the metabolic adjustments such as increased peak metabolism and decreased shivering were similar in outdoor and indoor rats exposed to cold, the adjustments in insulation and thermoneutral metabolic rates were quite different. The pelage insulation increased in the rats kept outside during the winter but remained unchanged in the rats kept in a constant temperature room maintained at 6 °C. The resting metabolic rate measured at 30 °C increased in the 6 °C acclimated rats but not in the winter-exposed animals. Over the temperature range +30 °C to −15 °C, while the indoor cold-acclimated rats had a higher metabolic rate than their controls acclimated to 30 °C, the winter rats had a lower metabolism than their summer controls.


1959 ◽  
Vol 37 (1) ◽  
pp. 473-478 ◽  
Author(s):  
O. Héroux ◽  
F. Depocas ◽  
J. S. Hart

Physiological adjustments to cold temperature have been compared in white rats exposed either to the outdoor fluctuating environmental conditions or to the indoor constant temperature conditions. While the metabolic adjustments such as increased peak metabolism and decreased shivering were similar in outdoor and indoor rats exposed to cold, the adjustments in insulation and thermoneutral metabolic rates were quite different. The pelage insulation increased in the rats kept outside during the winter but remained unchanged in the rats kept in a constant temperature room maintained at 6 °C. The resting metabolic rate measured at 30 °C increased in the 6 °C acclimated rats but not in the winter-exposed animals. Over the temperature range +30 °C to −15 °C, while the indoor cold-acclimated rats had a higher metabolic rate than their controls acclimated to 30 °C, the winter rats had a lower metabolism than their summer controls.


1970 ◽  
Vol 64 (2) ◽  
pp. 347-358
Author(s):  
A. Stanley Weltman ◽  
Arthur M. Sackler

ABSTRACT Body weight, metabolic rate, locomotor activity and alterations in endocrine organ activity were noted in recessive homozygous male whirler mice and the phenotypically »normal« heterozygotes. Representative populations of the two types were studied at different age levels. In general, body weights of the whirler mice were consistently and significantly lower. Open-field locomotion studies similarly indicated heightened locomotor activity. Total leukocyte and eosinophil counts were either markedly or significantly lower in the homozygous vs. heterozygous whirler groups. Evaluation of relative organ weights showed significantly increased adrenal weights in whirler mice sacrificed at 14 weeks and 11 months of age. These changes were accompanied by involution of the thymus. Thus, the varied data indicate persistent increased metabolism and adrenocortical activity during the life-span of the whirler mice. Seminal vesicle weight decreases in the whirler males at 11 months suggest lower gonadal function. The findings are in accord with previous studies of alterations in metabolic rates and endocrine function of homozygous whirler vs. heterozygous female mice.


Author(s):  
Andrew Gelman ◽  
Deborah Nolan

Descriptive statistics is the typical starting point for a statistics course, and it can be tricky to teach because the material is more difficult than it first appears. The activities in this chapter focus more on the topics of data displays and transformations, rather than the mean, median, and standard deviation, which are covered easily in a textbook and on homework assignments. Specific topics include: distributions and handedness scores; extrapolation of time series and world record times for the mile run; linear combinations and economic indexes; scatter plots and exam scores; and logarithmic transformations and metabolic rates.


1982 ◽  
Vol 37 (9) ◽  
pp. 839-844 ◽  
Author(s):  
Karel Sláma

In larval and pupal stages of several insect species the changes in total body metabolism appear to be inversely proportional to the course of ecdysteroid titres. The largest peaks of ecdysteroid occur exactly at the time of the lowest metabolic rates. These relationships are consequences of the developmental programming; ecdysteroid has no direct antimetabolic action. The problem of ecdysteroid-metabolic interactions has been discussed in relation to possible homeostatic function of ecdysteroids in insect development.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


Sign in / Sign up

Export Citation Format

Share Document