Reworking of Archaean and Early Proterozoic components during a progressive, Middle Proterozoic tectonothermal event in the Albany Mobile Belt, Western Australia

1992 ◽  
Vol 59 (1-2) ◽  
pp. 95-123 ◽  
Author(s):  
L BLACK ◽  
L HARRIS ◽  
C DELOR
1974 ◽  
Vol 110 ◽  
pp. 1-157
Author(s):  
J Muller

The Arsuk ø area is situated along the north-western border of the Early Proterozoic (> 1750 m.y.) mobile belt of South Greenland. Around Arsuk ø reactivated Archaean (> 2500 m.y.) basement is represented by gneiss, amphibolites and migmatites belonging to several lithological series. In the Arsuk basin Early Proterozoic (Ketilidian) supracrustals consist of a group of sedimentary rocks which is overlain by a group of volcanic rocks. The sedimentary Ikerasârssuk Group, with a thickness between 1000 and 1500 m, consists of semi-pelites and pelites with several zones of pyrite-bearing graphite schists and dolomitic limestones. There are also numerous sills of basic rocks which have the same age as the overlying group of volcanic rocks. In some localities the basal member of the group consists of feldspathic quartzites. The volcanic Arsuk Group, the upper part of which is eroded away, has a measured thickness of 4200 m. It consists of pillow lavas, basic massive lavas, volcanic breccias, lapillis and tuffites. There are also some ultrabasic rocks and thin horizons of pyrite-bearing graphite schists with chert. These supracrustal rocks underwent intense deformation at the close of the Early Proterozoic. Three phases can be recognised. The first phase produced N-S to NNE-SSW recumbent folds and the regional schistosity. Refolding during the second phase resulted in folds with E-W to ESE-trending axial planes and a strain slip cleavage. The last phase produced N-S trending structures. The grade of metamorphism during the first phase of deformation corresponds to greenschist facies. In the supracrustals close to the basement recrystallisation in amphibolite facies took place between the first and third phases of folding. This shows the existence of a gradient towards still higher grade metamorphic conditions in the underlying Archaean basement undergoing thorough reconstitution at the end of the Early Proterozoic. As a result of the deformation the stratigraphical unconformity between the Early Proterozoic (Ketilidian) supracrustals and the Archaean basement has been destroyed. During the Gardar period (Middle Proterozoic: > 950 m.y.) and again during the Mesozoic faulting and dyking occurred.


1992 ◽  
Vol 29 (6) ◽  
pp. 1166-1179 ◽  
Author(s):  
A. Kerr ◽  
T. E. Krogh ◽  
F. Corfu ◽  
U. Schärer ◽  
S. S. Gandhi ◽  
...  

Episodic granitoid plutonism in the Early Proterozoic Makkovik Province of the easternmost Canadian Shield is revealed by high-precision U–Pb zircon studies of a range of intrusive rock types. The oldest granites yield ages of 1893 ± 2 and 1891 ± 5 Ma and document a previously unrecognized event that may correlate with an early migmatization of reworked Archean basement. These dates also constrain early structural reworking of the basement, the earliest deformational event grouped as part of the Makkovikian orogeny. Four samples have essentially identical zircon ages of 1801 ± 2, 1802 ± 2, [Formula: see text], and 1825–1799 Ma, and a fifth is slightly older, at [Formula: see text]. These ages suggest correlation with local volcanic sequences, dated in part at 1807 ± 4 Ma. The plutonic suites include both syn- and posttectonic granitoid assemblages and define the main magmatic pulse associated with the Makkovikian orogeny and constrain its final deformational episode. Distinctive, fluorine-enriched "A-type" granites yield an age of 1719 ± 3 Ma and represent a previously unrecognized late postorogenic to anorogenic magmatism of regional significance. Two layered, gabbro–diorite–monzonite–syenite suites yield identical zircon ages of 1649 ± 1 and 1649 ± 3 Ma. A regionally extensive granodioritic unit gives an age of 1647 ± 2 Ma, and a high-level alaskitic granite is dated imprecisely at 1640–1650 Ma. These plutonic suites correlate with volcanic rocks previously dated at 1649 ± 1 Ma.These data show that the plutonic evolution of the Makkovik Province is significantly more complex than previously supposed. The clustering of ages suggests episodic, rather than continuous, magmatism. The different age groupings can, to some extent, be correlated with compositional associations defined by major- and trace-element geochemistry. The new data also raise questions about the regional configuration of Early and Middle Proterozoic orogenic belts in Labrador. Previous correlations between the Makkovik Province, the Ketilidian Mobile Belt of Greenland, and the Svecofennian and Trans-Scandinavian belts of Sweden are supported and expanded by these new results.


1989 ◽  
Vol 146 ◽  
pp. 48-53
Author(s):  
A.P Nutman ◽  
C.R.L Friend

The Ammassalik area of East Greenland lies in the centre of a 300 km wide early Proterozoic mobile belt, dominated by Archaean gneisses and early Proterozoic metasediments. Regional Proterozoic synkinematic metamorphism was associated with crustal thickening by southerly-directed thrusting and isoclinal folding. Maximum P, T conditions recorded during the regional metamorphism are found in the northern half of the mobile belt and are 9.5 kbar (equivalent to 30 km burial) and c. 700°C. Following some erosion and uplift, the late kinematic 1885 Ma Ammassalik Intrusive Complex (AIC) was intruded at pressures of c. 7 kbar (equivalent to a depth of 20 km). Temperatures in the metamorphic aureole of the AIC reached 800°C. Following further erosion and uplift, post kinematic, c. 1575 Ma granite-diorite-gabbro complexes were intruded, under pressures of 2.5 kbar (equivalent to a depth of 8 km).


1994 ◽  
Vol 161 ◽  
pp. 21-33
Author(s):  
H.F Jepsen ◽  
J.C Escher ◽  
J.D Friderichsen ◽  
A.K Higgins

Late Archaean and Early Proterozoic crust-forming events in North-East and eastern North Greenland were succeeded by Middle Proterozoic sedimentation and volcanic activity; Late Proterozoic through Tertiary sedimentation was interrupted by several periods of tectonic activity, including the Caledonian orogeny in East Greenland and the Mesozoic deformation of the Wandel Hav mobile belt. Photogeological studies helped pinpoint areas of special interest which were investigated during the short 1993 field season. Insights gained during field work include: the nature of the crystalline basement terrain in the Caledonian fold belt, redefinition of the upper boundary of the Upper Proterozoic Rivieradal sandstones, revision of Caledonian nappe terminology, and the northern extension of the Caledonian Storstrømmen shear zone.


1989 ◽  
Vol 146 ◽  
pp. 5-12
Author(s):  
B Chadwick ◽  
P.R Dawes ◽  
J.C Escher ◽  
C.R.L Friend ◽  
R.P Hall ◽  
...  

The Ammassalik mobile belt is characterised by a regional layer cake structure of tectonically interleaved sheets of quartzo-feldspathic orthogneisses and supracrustal rocks. The sheets of supracrustal rocks are most abundant in the north of the belt and they include semi-pelitic kyanite-sillimanite gneisses, graphitic schists, marble, amphibolites and local peridotite. The sheets are regarded as parts of a disrupted supracrustal sequence, here termed the Siportoq supracrustal association. Preliminary isotopic age data suggest that most of the orthogneisses are late Archaean, although some have early Proterozoic ages. The Siportoq supracrustal association has yielded an early Proterozoic age. Amphibolite dyke swarms were emplaced at various stages in the evolution of the mobile belt. The Ammassalik belt has an ill-defined northern limit marked by heterogeneous retrogression of a granulite facies terrain up to 100 km wide. Most of the belt is at amphibolite facies, with its southern limit lying to the south of the area considered here. The structure in the south is dominated by nappes and shear zones dipping NE within a wide tract of late Archaean orthogneisses intruded by amphibolite dyke swarms with relatively well preserved primary characteristics. The structure in the north is characterised by more pervasive deformation which gave rise to complex sequences of thrusting and nappe development propagating from the north. Large domes were superimposed on the nappe pile, perhaps as buoyancy phenomena. The dioritic Ammassalik Intrusive Complex (c. 1885 Ma) with its granulite facies assemblages is regarded as a late kinematic phenomenon. Major post-tectonic complexes of granite, diorite and gabbro (c. 1580 Ma) were intruded at a high level well after the close of the tectonism in the Ammassalik mobile belt.


Sign in / Sign up

Export Citation Format

Share Document