Thalassodendron ciliatum (Forssk.) Den Hartog: root structure and histochemistry in relation to apoplastic transport

1991 ◽  
Vol 40 (2) ◽  
pp. 129-143 ◽  
Author(s):  
Alban D. Barnabas
Planta ◽  
1998 ◽  
Vol 207 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Petra R. Moog

2016 ◽  
Vol 210 (3) ◽  
pp. 815-826 ◽  
Author(s):  
Catherine Roumet ◽  
Marine Birouste ◽  
Catherine Picon-Cochard ◽  
Murielle Ghestem ◽  
Normaniza Osman ◽  
...  

Author(s):  
Jean-Christophe Domec ◽  
John S King ◽  
Mary J Carmichael ◽  
Anna Treado Overby ◽  
Remi R Wortemann ◽  
...  

Abstract The influence of aquaporin (AQP) activity on plant water movement remains unclear, especially in plants subject to unfavorable conditions. We applied a multitiered approach at a range of plant scales to (i) characterize the resistances controlling water transport under drought, flooding and flooding plus salinity conditions; (ii) quantify the respective effects of AQP activity and xylem structure on root (Kroot), stem (Kstem) and leaf (Kleaf) conductances, and (iii) evaluate the impact of AQP-regulated transport capacity on gas exchange. We found that drought, flooding and flooding-salinity reduced Kroot and root AQP activity in Pinus taeda, whereas Kroot of the flood-tolerant Taxodium distichum did not decline under flooding. The extent of the AQP-control of transport efficiency varied among organs and species, ranging from 35%-55% in Kroot to 10%-30% in Kstem and Kleaf. In response to treatments, AQP-mediated inhibition of Kroot rather than changes in xylem acclimation controlled the fluctuations in Kroot. The reduction in stomatal conductance and its sensitivity to vapor pressure deficit were direct responses to decreased whole-plant conductance triggered by lower Kroot and larger resistance belowground. Our results provide new mechanistic and functional insights on plant hydraulics that are essential to quantifying the influences of future stress on ecosystem function.


Spine ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 1057-1064 ◽  
Author(s):  
Chaoyang Chen ◽  
John M. Cavanaugh ◽  
Cuneyt A. Ozaktay ◽  
Srinivasu Kallakuri ◽  
Albert I. King

2018 ◽  
Vol 9 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Tehreem Aslam ◽  
Ambreen Ahmed

In today’s world, environment is exposed to lead due to various anthropogenic activities. It adversely affects plants as well as microorganisms by disturbing soil health and fertility. Bioremediation is a technique used to sequester heavy metals from the contaminated soil and it can be used to decontaminate the polluted soil. Lead-tolerant plant health promoting rhizobacteria (PHPR) can be used to enhance the efficacy of lead remediation. Lead uptake can be enhanced through bacteria by modifying root structure, secreting metal sequestering molecules in rhizosphere and alleviating lead induced phytotoxicity. For this purpose, lead-resistant auxin-producing bacteria were isolated from the rhizosphere of some plants. These auxin-producing lead-tolerant bacteria were used to treat Zea mays both in the presence and absence of lead-stress under laboratory conditions and its impact on plant growth and biochemical parameters of Zea mays were analysed.


2021 ◽  
Vol 10 (3) ◽  
pp. 413-420
Author(s):  
Annisa Rhamadany ◽  
Chrisna Adhi Suryono ◽  
Delianis Pringgenies

Ekosistem lamun memiliki fungsi ekologi dan ekonomi yang tinggi. Peran ekosistem lamun dalam penyimpanan karbon akan tetapi masih belum menjadi sorotan. Tujuan dari penelitian ini yaitu untuk mengetahui nilai biomassa dan estimasi simpanan karbon pada ekosistem lamun di Perairan Batulawang, Pulau Kemujan serta Pulau Sintok, Taman Nasional Karimunjawa. Penelitian ini dilaksanakan pada 7 – 14 Noevmber 2019 di Perairan Batulawang dan Pulau Sintok, Taman Nasional Karimunjawa. Metode penelitian di lapangan menggunakan metode SeagrassWatch, sementara nilai biomassa dan nilai estimasi simpanan karbon dihitung menggunakan metode Metode Loss of Ignition (LOI) di laboratorium. Data yang diperoleh berupa pengukuran berat kering untuk menghitung biomassa dan analisa kandungan karbon pada lamun dan sedimen. Hasil penelitian didapatkan empat jenis lamun di Perairan Batulawang yaitu Enhalus acoroides, Thalassia hemprichii, Cymodocea serrulata, dan Thalassodendron ciliatum sedangkan di Pulau Sintok terdapat tiga jenis lamun yang ditemukan yaitu Thalassia hemprichii, Cymodocea rotundata, dan Halophila ovalis. Nilai total biomassa lamun terbesar pada Perairan Batulawang yaitu Enhalus acoroides dengan nilai 849,75 gbk/m2 dan nilai total biomassa lamun terkecil Thalassodendron ciliatum dengan nilai 29 gbk/m2. Nilai total biomassa lamun terbesar pada Pulau Sintok yaitu Cymodocea rotundata dengan nilai 177,75 gbk/m2dan nilai total biomassa lamun terkecil Halophila ovalis dengan nilai 4,75 gbk/m2. Hasil pengukuran karbon lamun pada Perairan Batulawang yaitu 12,97 – 359,87 gC/m2­ dan 258,20 – 541,51 gC/m2 pada sedimennya. Hasil pengukuran karbon pada lamun di Pulau Sintok yaitu 2,35 – 85,80 gC/m2 dan 204,92 – 765,92 gC/m2 pada sedimen. Kandungan karbon paling besar terdapat pada bagian bawah substrat (below ground). Kandungan karbon pada bagian bawah substrat tidak terganggu oleh faktor lingkungan (gelombang, arus, dan ulah manusia) sehingga terakumulasi baik. Seagrass ecosystems have high ecological and economic functions. The role of seagrass ecosystems in carbon storage, however, has not yet been highlighted. The purpose of this study was to determine the value of biomass and estimated carbon storage in seagrass ecosystems in Batulawang waters, Kemujan Island and Sintok Island, Karimunjawa National Park. This research was conducted on 7 − 14 November 2019 in Batulawang waters and Sintok Island, Karimunjawa National Park. The research method in the field uses the SeagrassWatch method, while the biomass value and the estimated value of carbon storage are calculated using the Loss of Ignition (LOI) method in the laboratory. The data obtained were measurements of dry weight to calculate biomass and analysis of carbon content in seagrass and sediments. The result shows that there are four species of seagrass in Batulawang Waters, they are Enhalus acoroides, Thalassia hemprichii, Cymodocea serrulata, and Thalassodendron cliatum meanwhile in Sintok Island there are three species, they are, Thalassia hemprichii, Cymodocea rotundata, and Halophila ovalis. The measurement of carbon is done by using Loss on Ignition Method. The highest total seagrass biomass in Batulawang waters is Enhalus acoroides with a value of 849.75 gbk/m2 and the lowest total seagrass biomass is Thalassodendron ciliatum with a value of 29 gbk/m2. The highest total seagrass biomass on Sintok Island is Cymodocea rotundata with a value of 177.75 gbk/m2 and the lowest total seagrass biomass is Halophila ovalis with a value of 4.75 gbk/m2. The results of measurements of seagrass carbon in Batulawang waters are 12,97 – 359,87 gC/m2­ and 258,20 – 541,51 gC/m2 on the sediments. The result of seagrass carbon measurement in Sintok Island is 2,35 – 85,80 gC/m2 and 204,92 – 765,92 gC/m2 on the sediments. The largest carbon content is at the bottom of the substrate (below ground). The carbon content at the bottom of the substrate is not disturbed by environmental factors (waves, currents, and human activities) so that it accumulates well.


2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Zahra SHEKARI ◽  
Zahra TAHMASEBI ◽  
Homayoun KANOUNI ◽  
Ali ashraf MEHRABI

<p class="042abstractstekst">Root structure modification can improve important agronomic traits including yield, drought tolerance and nutrient deficiency resistance. The aim of the present study was to investigate the diversity of root traits and to find simple sequence repeat (SSR) markers linked to root traits in chickpea (<em>Cicer arietinum </em>L.). This research was performed using 39 diverse accessions of chickpea. The results showed that there is significant variation in root traits among chickpea genotypes. A total of 26 alleles were detected 26 polymorphic bands were produced by 10 SSR markers in the eight linkage groups (LG). The results indicated that there is substantial variability present in chickpea<strong> </strong>germplasm for root traits.<strong> </strong>By analyzing the population structure, four subpopulations were identified.<strong> </strong>PsAS2, AF016458, 16549 and 19075 SSR markers on LG1, LG3, LG2 and LG1 linkage group respectively were<strong> </strong>associated with root traits<strong>.</strong> The research findings provide valuable information for improving root traits for chickpea breeders.</p>


2017 ◽  
pp. 65
Author(s):  
Estela Sandoval ◽  
Robert A. Bye ◽  
Griselda Ríos ◽  
María Isabel Aguilar

The roots of Iostephane heterophylla are popular in Mexican traditional medicine and as such are a good candidate to develop herbal drug preparations to be used as phytomedicine. International criteria for validation and standardization of a herbal product as phytomedicine include, among others, the integration of microscopic and histochemical characteristics of the raw material, as in this case the herbal drug, to guarantee its authenticity. As an original contribution to the knowledge of the root structure of this species, fresh roots fixed in FAA, were processed with conventional histological techniques (paraffin embedment and subsequent transversal and longitudinal sections that were stained with safranin-fast green) and stained with histochemical markers for identification of cellular contents. The root description includes dermic, fundamental and vascular tissues as well as cellular contents (proteins, polysaccharides, polyphenols, condensed and hydrolyzed tannins, starches and lipids, some of which have been isolated in previous phytochemical studies). These characteristics are compared to those of other species of Asteraceae as an initial comparative study to contribute to identify medicinal plants based upon their underground parts.


Sign in / Sign up

Export Citation Format

Share Document