Decreased interleukin-2 β-chain receptor expression by interleukin-4 on LGL: influence on the IL-2 induced cytotoxicity and proliferation

1992 ◽  
Vol 64 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Christer Lindqvist ◽  
Ann-Len Östman ◽  
Christian Okerblom ◽  
Karl Åkerman
Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Chang H. Kim ◽  
Brent Johnston ◽  
Eugene C. Butcher

Abstract Natural killer T (NKT) cells are important regulators of the immune system, but their trafficking machinery, including expression of chemokine receptors, has been poorly defined. Unlike other conventional T-cell populations, we show that most NKT cells express receptors for extralymphoid tissue or inflammation-related chemokines (CCR2, CCR5, and CXCR3), while few NKT cells express lymphoid tissue–homing chemokine receptors (CCR7 and CXCR5). A population with homing potential for lymph nodes (L selectin+ CCR7+) exists only within a small subset of CD4 NKT cells. We show differential expression of chemokine receptors among NKT cell subsets: CCR4 is mainly expressed by a high cytokine (interleukin-4/interleukin-2)–producing (CD4) NKT subset, while CCR1, CCR6, and CXCR6 are preferentially expressed by the low cytokine-producing CD8 and CD4−CD8− subsets. In line with this, TARC/CCL17 (a CCR4 ligand) induces preferential chemotaxis of the CD4 NKT subset, while chemotactic activities of LARC/CCL20 (a CCR6 ligand) and MIP-1α/CCL3 (a CCR1 ligand) are focused on the CD8 and CD4−CD8− NKT cells. We conclude that, unlike conventional naive, memory, or effector T cells, the entire NKT cell population expresses nonlymphoid tissue homing chemokine receptors, yet NKT cell subsets differ considerably from each other by displaying distinct and reciprocal expression patterns of some chemokine receptors. Our results identify chemokine receptors that are potentially important for trafficking of human blood NKT cell subsets and reveal their function (cytokine production capacity)–dependent differential trafficking potentials.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mahinbanu Mammadli ◽  
Weishan Huang ◽  
Rebecca Harris ◽  
Aisha Sultana ◽  
Ying Cheng ◽  
...  

Allogeneic hematopoietic stem cell transplantation is a potentially curative procedure for many malignant diseases. Donor T cells prevent disease recurrence via graft-versus-leukemia (GVL) effect. Donor T cells also contribute to graft-versus-host disease (GVHD), a debilitating and potentially fatal complication. Novel treatment strategies are needed which allow preservation of GVL effects without causing GVHD. Using murine models, we show that targeting IL-2-inducible T cell kinase (ITK) in donor T cells reduces GVHD while preserving GVL effects. Both CD8+ and CD4+ donor T cells from Itk-/- mice produce less inflammatory cytokines and show decrease migration to GVHD target organs such as the liver and small intestine, while maintaining GVL efficacy against primary B-cell acute lymphoblastic leukemia (B-ALL). Itk-/- T cells exhibit reduced expression of IRF4 and decreased JAK/STAT signaling activity but upregulating expression of Eomesodermin (Eomes) and preserve cytotoxicity, necessary for GVL effect. Transcriptome analysis indicates that ITK signaling controls chemokine receptor expression during alloactivation, which in turn affects the ability of donor T cells to migrate to GVHD target organs. Our data suggest that inhibiting ITK could be a therapeutic strategy to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.


Author(s):  
Marc Permanyer ◽  
Berislav Bošnjak ◽  
Silke Glage ◽  
Michaela Friedrichsen ◽  
Stefan Floess ◽  
...  

AbstractSignaling via interleukin-2 receptor (IL-2R) is a requisite for regulatory T (Treg) cell identity and function. However, it is not completely understood to what degree IL-2R signaling is required for Treg cell homeostasis, lineage stability and function in both resting and inflammatory conditions. Here, we characterized a spontaneous mutant mouse strain endowed with a hypomorphic Tyr129His variant of CD25, the α-chain of IL-2R, which resulted in diminished receptor expression and reduced IL-2R signaling. Under noninflammatory conditions, Cd25Y129H mice harbored substantially lower numbers of peripheral Treg cells with stable Foxp3 expression that prevented the development of spontaneous autoimmune disease. In contrast, Cd25Y129H Treg cells failed to efficiently induce immune suppression and lost lineage commitment in a T-cell transfer colitis model, indicating that unimpaired IL-2R signaling is critical for Treg cell function in inflammatory environments. Moreover, single-cell RNA sequencing of Treg cells revealed that impaired IL-2R signaling profoundly affected the balance of central and effector Treg cell subsets. Thus, partial loss of IL-2R signaling differentially interferes with the maintenance, heterogeneity, and suppressive function of the Treg cell pool.


Sign in / Sign up

Export Citation Format

Share Document