Dopamine innervation of the prefrontal cortex and amygdala and response to aversive stimulation in the rat

1976 ◽  
Vol 3 (1-2) ◽  
pp. 84-85
Author(s):  
Steven J. Cooper
1987 ◽  
Vol 151 (3) ◽  
pp. 288-301 ◽  
Author(s):  
P. J. McKenna

The dopamine hypothesis of schizophrenia implies that positive schizophrenic symptoms should be understandable by reference to brain structures receiving a dopamine innervation, or in terms of the functional role of dopamine itself. The basal ganglia, ventral striatum, septo-hippocampal system, and prefrontal cortex, sites of mesotelencephalic dopamine innervation, are examined and it is argued that their dysfunction could form the basis of particular schizophrenic symptom classes. The postulated involvement of dopamine in reinforcement processes might further assist such interpretations. This type of analysis can be extended to other categories of schizophrenic psychopathology.


1999 ◽  
Vol 156 (10) ◽  
pp. 1580-1589 ◽  
Author(s):  
Mayada Akil ◽  
Joseph N. Pierri ◽  
Richard E. Whitehead ◽  
Christine L. Edgar ◽  
Carrie Mohila ◽  
...  

2020 ◽  
Author(s):  
Feng Xu ◽  
Munenori Ono ◽  
Tetsufumi Ito ◽  
Osamu Uchiumi ◽  
Furong Wang ◽  
...  

2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


Sign in / Sign up

Export Citation Format

Share Document