Different effects of electrical stimulation of the mesencephalic and pontine reticular formation on the release of dopamine and acetylcholine in the cat caudate nucleus

1987 ◽  
Vol 78 (1) ◽  
pp. 57-62 ◽  
Author(s):  
R. Romo ◽  
Y.Morot Gaudry-Talarmain ◽  
A. Chéramy ◽  
G. Godeheu ◽  
V. Leviel ◽  
...  
2004 ◽  
Vol 92 (4) ◽  
pp. 2261-2273 ◽  
Author(s):  
Yoshiko Izawa ◽  
Hisao Suzuki ◽  
Yoshikazu Shinoda

To understand the neural mechanism of fixation, we investigated effects of electrical stimulation of the frontal eye field (FEF) and its vicinity on visually guided (Vsacs) and memory-guided saccades (Msacs) in trained monkeys and found that there were two types of suppression induced by the electrical stimulation: suppression of ipsilateral saccades and suppression of bilateral saccades. In this report, we characterized the properties of the suppression of bilateral Vsacs and Msacs. Stimulation of the bilateral suppression sites suppressed the initiation of both Vsacs and Msacs in all directions during and ∼50 ms after stimulation but did not affect the vector of these saccades. The suppression was stronger for ipsiversive larger saccades and contraversive smaller saccades, and saccades with initial eye positions shifted more in the saccadic direction. The most effective stimulation timing for the suppression of ipsilateral and contralateral Vsacs was ∼40–50 ms before saccade onset, indicating that the suppression occurred most likely in the superior colliculus and/or the paramedian pontine reticular formation. Suppression sites of bilateral saccades were located in the prearcuate gyrus facing the inferior arcuate sulcus where stimulation induced suppression at ≤40 μA but usually did not evoke any saccades at 80 μA and were different from those of ipsilateral saccades where stimulation evoked saccades at ≤50 μA. The bilateral suppression sites contained fixation neurons. The results suggest that fixation neurons in the bilateral suppression area of the FEF may play roles in maintaining fixation by suppressing saccades in all directions.


1962 ◽  
Vol 40 (1) ◽  
pp. 7-12
Author(s):  
J. M. Langlois ◽  
Guy Lamarche

The projections of the trigeminal nerve in the pontine reticular formation of the cat have been investigated by recording unit activity, after physiological stimulation of the face, in 30 "encéphales isolés" preparations. No somatotopical arrangement was found but a high degree of spatial convergence onto pontine reticular units exists and a certain degree of functional organization was observed.


1990 ◽  
Vol 63 (5) ◽  
pp. 1118-1127 ◽  
Author(s):  
L. Villanueva ◽  
K. D. Cliffer ◽  
L. S. Sorkin ◽  
D. Le Bars ◽  
W. D. Willis

1. Recordings were made in anesthetized monkeys from neurons in the medullary reticular formation (MRF) caudal to the obex. Responses of 19 MRF neurons to mechanical, thermal, and/or electrical stimulation were examined. MRF neurons exhibited convergence of nociceptive cutaneous inputs from widespread areas of the body and face. 2. MRF neurons exhibited low levels of background activity. Background activity increased after periods of intense cutaneous mechanical or thermal stimulation. Nearly all MRF neurons tested failed to respond to heterosensory stimuli (flashes, whistle sounds), and none responded to joint movements. 3. MRF neurons were excited by and encoded the intensity of noxious mechanical stimulation. Responses to stimuli on contralateral limbs were greater than those to stimuli on ipsilateral limbs. Responses were greater to stimuli on the forelimbs than to stimuli on the hindlimbs. 4. MRF neurons responded to noxious thermal stimulation (51 degrees C) of widespread areas of the body. Mean responses from stimulation at different locations were generally parallel to those for noxious mechanical stimulation. Responses increased with intensity of noxious thermal stimulation (45-50 degrees C). 5. MRF neurons responded with one or two peaks of activation to percutaneous electrical stimulation applied to the limbs, the face, or the tail. The differences in latency of responses to stimulating two locations along the tail suggested that activity was elicited by activation of peripheral fibers with a mean conduction velocity in the A delta range. Stimulation of the contralateral hindlimb elicited greater responses, with lower thresholds and shorter latencies, than did stimulation of the ipsilateral hindlimb. 6. Electrophysiological properties of monkey MRF neurons resembled those of neurons in the medullary subnucleus reticularis dorsalis (SRD) in the rat. Neurons in the caudal medullary reticular formation could play a role in processing nociceptive information. Convergence of nociceptive cutaneous input from widespread areas of the body suggests that MRF neurons may contribute to autonomic, affective, attentional, and/or sensory-motor processes related to pain.


2001 ◽  
Vol 86 (5) ◽  
pp. 2583-2596 ◽  
Author(s):  
M.-J. Bourque ◽  
A. Kolta

Numerous evidence suggests that interneurons located in the lateral tegmentum at the level of the trigeminal motor nucleus contribute importantly to the circuitry involved in mastication. However, the question of whether these neurons participate actively to genesis of the rhythmic motor pattern or simply relay it to trigeminal motoneurons remains open. To answer this question, intracellular recordings were performed in an in vitro slice preparation comprising interneurons of the peritrigeminal area (PeriV) surrounding the trigeminal motor nucleus (NVmt) and the parvocellular reticular formation ventral and caudal to it (PCRt). Intracellular and extracellular injections of anterograde tracers were also used to examine the local connections established by these neurons. In 97% of recordings, electrical stimulation of adjacent areas evoked a postsynaptic potential (PSP). These PSPs were primarily excitatory, but inhibitory and biphasic responses were also induced. Most occurred at latencies longer than those required for monosynaptic transmission and were considered to involve oligosynaptic pathways. Both the anatomical and physiological findings show that all divisions of PeriV and PCRt are extensively interconnected. Most responses followed high-frequency stimulation (50 Hz) and showed little variability in latency indicating that the network reliably distributes inputs across all areas. In all neurons but one, excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs) were also elicited by stimulation of NVmt, suggesting the existence of excitatory and inhibitory interneurons within the motor nucleus. In a number of cases, these PSPs were reproduced by local injection of glutamate in lieu of the electrical stimulation. All EPSPs induced by stimulation of PeriV, PCRt, or NVmt were sensitive to ionotropic glutamate receptor antagonists 6-cyano-7-dinitroquinoxaline and d,l-2-amino-5-phosphonovaleric acid, while IPSPs were blocked by bicuculline and strychnine, antagonists of GABAA and glycine receptors. Examination of PeriV and PCRt intrinsic properties indicate that they form a fairly uniform network. Three types of neurons were identified on the basis of their firing adaptation properties. These types were not associated with particular regions. Only 5% of all neurons showed bursting behavior. Our results do not support the hypothesis that neurons of PeriV and PCRt participate actively to rhythm generation, but suggest instead that they are driven by rhythmical synaptic inputs. The organization of the network allows for rapid distribution of this rhythmic input across premotoneuron groups.


1983 ◽  
Vol 3 (3) ◽  
pp. 270-279 ◽  
Author(s):  
Costantino Iadecola ◽  
Masatsugu Nakai ◽  
Ehud Arbit ◽  
Donald J. Reis

We examined the effects of electrical stimulation of a restricted area of the dorsal medullary reticular formation (DMRF) on regional cerebral blood flow (CBF) in anesthetized (by chloralose), paralyzed (by curare) rats. CBF was measured in tissue samples by the Kety principle, with 14C-iodoantipyrine as indicator. Stimulation of DMRF elicited a widespread, significant increase in CBF in 12 of 13 areas. The increase in flow was greatest in cerebral cortex, up to 240% of control. However, it was also substantially increased in selected regions of telencephalon, diencephalon, mesencephalon, and lower brainstem, but not cerebellum. In contrast, electrical stimulation of the midline (interstitial nucleus of the medial longitudinal fasciculus) 1 mm medial to the DMRF did not change CBF. The increase in CBF evoked by DMRF stimulation persisted after transection of the spinal cord at C1 or cervical sympathetic trunk. We conclude that excitation of neurons originating in or passing through the DMRF can elicit a potent and virtually global increase of CBF. The effect appears to be mediated by intrinsic pathways of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document