Microinjection of intermediate filament proteins into living cells with and without preexisting intermediate filament network

1991 ◽  
Vol 15 (4) ◽  
pp. 287-296 ◽  
Author(s):  
W WIEGERS ◽  
B HONER ◽  
P TRAUB
2001 ◽  
Vol 114 (6) ◽  
pp. 1079-1089 ◽  
Author(s):  
S.C. Schweitzer ◽  
M.W. Klymkowsky ◽  
R.M. Bellin ◽  
R.M. Robson ◽  
Y. Capetanaki ◽  
...  

De novo expression of vimentin, GFAP or peripherin leads to the assembly of an extended intermediate filament network in intermediate filament-free SW13/cl.2 cells. Desmin, in contrast, does not form extended filament networks in either SW13/cl.2 or intermediate filament-free mouse fibroblasts. Rather, desmin formed short thickened filamentous structures and prominent spot-like cytoplasmic aggregates that were composed of densely packed 9–11 nm diameter filaments. Analysis of stably transfected cell lines indicates that the inability of desmin to form extended networks is not due to a difference in the level of transgene expression. Nestin, paranemin and synemin are large intermediate filament proteins that coassemble with desmin in muscle cells. Although each of these large intermediate filament proteins colocalized with desmin when coexpressed in SW-13 cells, expression of paranemin, but not synemin or nestin, led to the formation of an extended desmin network. A similar rescue of desmin network organization was observed when desmin was coexpressed with vimentin, which coassembles with desmin, or with keratins, which formed a distinct filament network. These studies demonstrate that desmin filaments differ in their organizational properties from the other vimentin-like intermediate filament proteins and appear to depend upon coassembly with paranemin, at least when they are expressed in non-muscle cells, in order to form an extended filament network.


1995 ◽  
Vol 108 (10) ◽  
pp. 3279-3284 ◽  
Author(s):  
C. Cui ◽  
P.J. Stambrook ◽  
L.M. Parysek

The properties of full-length and mutant peripherins were studied in intermediate filament-less SW13 cells to define regions of peripherin that are essential for initiation of filament assembly. A full-length rat peripherin gene transfected into SW13 cells resulted in filament formation, consistent with the close structural relationship of peripherin to other type III intermediate filament proteins that readily form homopolymers. Translation of full-length rat peripherin is initiated predominantly at the second of two inframe AUGs. Deletions within the amino terminus of wild-type peripherin abolished its ability to form filaments in SW13 cells. In contrast, deletion of the entire carboxyl-terminal tail of peripherin did not affect its ability to form filamentous arrays in transfected SW13 cells. These results indicate that, of the intermediate filament proteins that are expressed in mature neurons, only peripherin and alpha-internexin are capable of making homopolymer intermediate filaments. In addition, mutations of the carboxyl tail of peripherin generally do not interfere with filament network formation.


1998 ◽  
Vol 111 (3) ◽  
pp. 321-333 ◽  
Author(s):  
G.Y. Ching ◽  
R.K. Liem

The roles of the head and tail domains of alpha-internexin, a type IV neuronal intermediate filament protein, in its self-assembly and coassemblies with neurofilament triplet proteins, were examined by transient transfections with deletion mutants in a non-neuronal cell line lacking an endogenous cytoplasmic intermediate filament network. The results from the self-assembly studies showed that the head domain was essential for alpha-internexin's ability to self-assemble into a filament network and the tail domain was important for establishing a proper filament network. The data from the coassembly studies demonstrated that alpha-internexin interacted differentially with the neurofilament triplet protein subunits. Wild-type NF-L or NF-M, but not NF-H, was able to complement and form a normal filament network with the tailless alpha-internexin mutant, the alpha-internexin head-deletion mutant, or the alpha-internexin mutant missing the entire tail and some amino-terminal portion of the head domain. In contrast, neither the tailless NF-L mutant nor the NF-L head-deletion mutant was able to form a normal filament network with any of these alpha-internexin deletion mutants. However, coassembly of the tailless NF-M mutant with the alpha-internexin head-deletion mutant and coassembly of the NF-M head-deletion mutant with the tailless alpha-internexin mutant resulted in the formation of a normal filament network. Thus, the coassembly between alpha-internexin and NF-M exhibits some unique characteristics previously not observed with other intermediate filament proteins: only one intact tail and one intact head are required for the formation of a normal filament network, and they can be present within the same partner or separately in two partners.


1997 ◽  
Vol 110 (21) ◽  
pp. 2759-2769 ◽  
Author(s):  
K. Djabali ◽  
B. de Nechaud ◽  
F. Landon ◽  
M.M. Portier

The small heat shock protein alphaB-crystallin interacts with intermediate filament proteins. Using a co-sedimentation assay, we showed that in vitro binding of alphaB-crystallin to peripherin and vimentin was temperature-dependent. Specifically, a synthetic peptide representing the first ten residues of alphaB-crystallin was involved in this interaction. When cells were submitted to different stress conditions such as serum starvation, hypertonic stress, or heat shock, we observed a dynamic reorganisation of the intermediate filament network, and concomitant recruitment of alphaB-crystallins on intermediate filament proteins. Under normal conditions alphaB-crystallin was extracted from cells by detergent. In stressed cells, alphaB-crystallin colocalised with intermediate filament proteins, and became resistant to detergent extraction. The intracellular state of alphaB-crystallin seemed to correlate directly with the remodelling of the intermediate filament network in response to stress. This suggested that alphaB-crystallin functions as a molecular chaperone for intermediate filament proteins.


2018 ◽  
Author(s):  
Rucha Sanghvi-Shah ◽  
Shalaka Paranjpe ◽  
Jiyeon Baek ◽  
Radek Dobrowolski ◽  
Gregory F. Weber

AbstractThe significance of cytoplasmic intermediate filament proteins has previously been examined largely through various genetic approaches, including knockdown, knockout and transgenic overexpression. Few studies to date have attempted to examine the role of specifically the filamentous intermediate filament network in orchestrating various cell functions. To directly assess the role of the filamentous keratin intermediate filament network in regulation of cellular behavior, we created a PhotoActivatable disruptor of keratin Intermediate Filaments (PA-dIF). This genetically encoded construct consists of a peptide derived from the 2B2 region of Keratin 8 fused to the photosensitive LOV2 domain from Avena sativa phototropin-1. Upon 458 nm photoirradiation, PA-dIF disrupts keratin intermediate filaments in multiple species and cell types. Marked remodeling of the keratin intermediate filament network accompanies collective cellular morphogenetic movements that occur during gastrulation and neurulation in the Xenopus laevis frog embryo. Light-based activation of PA-dIF was able to disrupt keratin intermediate filaments in Xenopus cells and lead to tissue-specific disruption of morphogenetic processes. Altogether our data show a fundamental requirement for keratin intermediate filaments in orchestrating morphogenetic movements during early embryonic development that have yet to be revealed in other model systems. Moreover, our data validate the utility of a new genetically encoded photoactivatable tool for the disruption and examination of intermediate filaments.


2021 ◽  
Vol 22 (8) ◽  
pp. 4256
Author(s):  
Lorenzo Maggi ◽  
Manolis Mavroidis ◽  
Stelios Psarras ◽  
Yassemi Capetanaki ◽  
Giovanna Lattanzi

Intermediate filaments are major components of the cytoskeleton. Desmin and synemin, cytoplasmic intermediate filament proteins and A-type lamins, nuclear intermediate filament proteins, play key roles in skeletal and cardiac muscle. Desmin, encoded by the DES gene (OMIM *125660) and A-type lamins by the LMNA gene (OMIM *150330), have been involved in striated muscle disorders. Diseases include desmin-related myopathy and cardiomyopathy (desminopathy), which can be manifested with dilated, restrictive, hypertrophic, arrhythmogenic, or even left ventricular non-compaction cardiomyopathy, Emery–Dreifuss Muscular Dystrophy (EDMD2 and EDMD3, due to LMNA mutations), LMNA-related congenital Muscular Dystrophy (L-CMD) and LMNA-linked dilated cardiomyopathy with conduction system defects (CMD1A). Recently, mutations in synemin (SYNM gene, OMIM *606087) have been linked to cardiomyopathy. This review will summarize clinical and molecular aspects of desmin-, lamin- and synemin-related striated muscle disorders with focus on LMNA and DES-associated clinical entities and will suggest pathogenetic hypotheses based on the interplay of desmin and lamin A/C. In healthy muscle, such interplay is responsible for the involvement of this network in mechanosignaling, nuclear positioning and mitochondrial homeostasis, while in disease it is disturbed, leading to myocyte death and activation of inflammation and the associated secretome alterations.


Sign in / Sign up

Export Citation Format

Share Document