Composite-component duality and baryonic number in subcomponent models for quarks and leptons

1981 ◽  
Vol 100 (2) ◽  
pp. 135-140 ◽  
Author(s):  
R. Casalbuoni ◽  
R. Gatto
2016 ◽  
Vol 2 (1) ◽  
pp. 20-25
Author(s):  
Michal Tropp ◽  
Michal Lukac

The article covers the usability of alternative materials in vehicle construction. The paper elaborates upon the setup of the process and analysis of the results of the carbon composite component FEM model. The 3D model, used for the examination, is a part of axle from an alternative small electric vehicle. The analysis was conducted with the help of MSC Adams and Ansys Workbench software. Color maps of von Mises stress in material and total deformations of the component are the results of calculation.


2012 ◽  
Vol 426 ◽  
pp. 330-334 ◽  
Author(s):  
Ying Guang Li ◽  
C.Y. Fu ◽  
D.S. Li ◽  
S.M. Wan

Aiming at the problems of composites of anisotropic, poor in dimensional and uneven temperature field in the designing of composite tool in autoclave, the techniques of designing the composite tool of aircraft components were constructed, involving in the following aspects: Taking advantage of design flexibility of composites, the thermal expansion coefficient between the moulding board and composite components matched. By analyzing the cure process curve of fiber-reinforced composites, the result that the crisis point without stress between component and tool, which the shape of composite component decided was concluded. By the temperature field analysis, and contrasted with the experimental results, the maximum difference was 4.95°C,after analysis, optimized the structure of the tool, obtaining the relatively uniform temperature field of the board.


2013 ◽  
Vol 639-640 ◽  
pp. 1046-1050 ◽  
Author(s):  
Yun Feng Xiao ◽  
Da Hai Zhang ◽  
Li Liu

The ultrasonic method and the impact-echo method are two kinds of nondestructive test method (NDT), which are widely used, not only for concrete component, but for masonry structures. However, it is hard to detect the flaw in the concrete composite component if only with one kind of detection method. In this study, the principle of ultrasonic method and impact-echo method are outlined. And an attempt of a new method is taken, that Ultrasonic method together with Impact-echo method is used in detecting the deflection in Concrete Composite Component. It is proved that the result of this new method is more accurate and stable than that of only using ultrasonic method or impact-echo method. Introduction Introduction


Author(s):  
Ming Qiu ◽  
Yong-Zhen Zhang ◽  
Jun Zhu

By using genetic algorithms and radius basis function (GARBF) neural network, the predicting model of friction coefficient has been established based on a measured database with five sliding velocities of 40, 55, 70, 85, 100 m/s and four different normal pressures of 0.1333, 0.4667, 0.60 and 0.7333 MPa. The modeling results confirm the feasibility of the GARBF network and its good correlation with the experimental results. The predictive quality of the GARBF network can be further improved by enlarging the training datasets and by optimizing the network construction. A well-trained GARBF modeling is expected to be very helpful for selecting composite component under different working conditions, and for predicting tribological properties. Finally, by using GARBF modeling data to predict analysis, the results show that the friction coefficients of these composites were increased with the increase in material thermal capability at some region.


2004 ◽  
Vol 13 (02) ◽  
pp. 425-437 ◽  
Author(s):  
UNG CHAN TSAN

An electrically charged particle is necessarily different from its antiparticle while an electrically neutral particle is either identical with or different from its antiparticle. A truly neutral particle is a particle identical to its antiparticle, which means that all its algebraic intrinsic properties are equal to zero since particle and antiparticle have all their algebraic intrinsic properties opposite. We propose two complementary methods to recognize the true nature of any electrically neutral particle. On the one hand, any non-null algebraic intrinsic property of a particle (properties such as Q, magnetic moment already known from classical physics, or quantum numbers such as baryonic number A, lepton number L or flavors, which are meaningful only in the quantum world) reveals that it is distinct from its antiparticle. On the other hand, any particle decaying through a self-conjugate channel or/and through both two conjugate channels is a truly neutral particle implying then that all algebraic intrinsic properties, known or yet unknown, of this particle are null. According to these methods, the neutrino, like any fermion, cannot be its own antiparticle, so neutrinoless double beta decay cannot take place in nature. We point out the internal contradiction required by the existence of hypothetical neutrinoless double beta decay. We suggest that persistent failure to find experimental evidence for this decay mechanism despite huge efforts dedicated to this aim is consistent with the physics of this process. The immediate consequence would be that limits of neutrino mass deduced from neutrinoless double beta decay cannot be used as constraints in contrast with mass limits deduced from the behavior of the end-point in simple beta spectra.


1992 ◽  
Vol 72-74 ◽  
pp. 593-604
Author(s):  
M.B. Mulhern ◽  
P.F. Murphy ◽  
M.R. Monaghan ◽  
P.J. Mallon

Sign in / Sign up

Export Citation Format

Share Document