Proton decay in models with intermediate scale supersymmetry breaking

1983 ◽  
Vol 121 (2-3) ◽  
pp. 130-134 ◽  
Author(s):  
N. Sakai
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Maria Mehmood ◽  
Mansoor Ur Rehman ◽  
Qaisar Shafi

Abstract We explore proton decay in a class of realistic supersymmetric flipped SU(5) models supplemented by a U(1)R symmetry which plays an essential role in implementing hybrid inflation. Two distinct neutrino mass models, based on inverse seesaw and type I seesaw, are identified, with the latter arising from the breaking of U(1)R by nonrenormalizable superpotential terms. Depending on the neutrino mass model an appropriate set of intermediate scale color triplets from the Higgs superfields play a key role in proton decay channels that include p → (e+, μ+) π0, p → (e+, μ+) K0, p →$$ \overline{v}{\pi}^{+} $$ v ¯ π + , and p →$$ \overline{v}{K}^{+} $$ v ¯ K + . We identify regions of the parameter space that yield proton lifetime estimates which are testable at Hyper-Kamiokande and other next generation experiments. We discuss how gauge coupling unification in the presence of intermediate scale particles is realized, and a Z4 symmetry is utilized to show how such intermediate scales can arise in flipped SU(5). Finally, we compare our predictions for proton decay with previous work based on SU(5) and flipped SU(5).


1997 ◽  
Vol 12 (35) ◽  
pp. 2647-2653 ◽  
Author(s):  
Tianjun Li ◽  
D. V. Nanopoulos ◽  
Jorge L. Lopez

We propose a supergravity model that contains elements recently shown to arise in the strongly-coupled limit of the E8 × E8 heterotic string (M-theory), including a no-scale-like Kähler potential, the identification of the string scale with the gauge coupling unification scale, and the onset of supersymmetry breaking at an intermediate scale determined by the size of the 11th dimension of M-theory. We also study the phenomenological consequences of such scenario, which include a rather constrained sparticle spectrum within the reach of present-generation particle accelerators.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
John Ellis ◽  
Jason L. Evans ◽  
Natsumi Nagata ◽  
Keith A. Olive ◽  
L. Velasco-Sevilla

AbstractWe explore the possible values of the $$\mu \rightarrow e \gamma $$ μ → e γ branching ratio, $$\text {BR}(\mu \rightarrow e\gamma )$$ BR ( μ → e γ ) , and the electron dipole moment (eEDM), $$d_e$$ d e , in no-scale SU(5) super-GUT models with the boundary conditions that soft supersymmetry-breaking matter scalar masses vanish at some high input scale, $$M_\mathrm{in}$$ M in , above the GUT scale, $$M_{\mathrm{GUT}}$$ M GUT . We take into account the constraints from the cosmological cold dark matter density, $$\Omega _{CDM} h^2$$ Ω CDM h 2 , the Higgs mass, $$M_h$$ M h , and the experimental lower limit on the lifetime for $$p \rightarrow K^+ \bar{\nu }$$ p → K + ν ¯ , the dominant proton decay mode in these super-GUT models. Reconciling this limit with $$\Omega _{CDM} h^2$$ Ω CDM h 2 and $$M_h$$ M h requires the Higgs field responsible for the charge-2/3 quark masses to be twisted, and possibly also that responsible for the charge-1/3 and charged-lepton masses, with model-dependent soft supersymmetry-breaking masses. We consider six possible models for the super-GUT initial conditions, and two possible choices for quark flavor mixing, contrasting their predictions for proton decay with versions of the models in which mixing effects are neglected. We find that $$\tau \left( p\rightarrow K^+ \bar{\nu }\right) $$ τ p → K + ν ¯ may be accessible to the upcoming Hyper-Kamiokande experiment, whereas all the models predict $$\text {BR}(\mu \rightarrow e\gamma )$$ BR ( μ → e γ ) and $$d_e$$ d e below the current and prospective future experimental sensitivities or both flavor choices, when the dark matter density, Higgs mass and current proton decay constraints are taken into account. However, there are limited regions with one of the flavor choices in two of the models where $$\mu \rightarrow e$$ μ → e conversion on a heavy nucleus may be observable in the future. Our results indicate that there is no supersymmetric flavor problem in the class of no-scale models we consider.


2009 ◽  
Vol 671 (3) ◽  
pp. 374-377 ◽  
Author(s):  
Philippe Brax ◽  
Carlos A. Savoy ◽  
Arunansu Sil

1983 ◽  
Vol 120 (4-6) ◽  
pp. 341-345 ◽  
Author(s):  
S. Rajpoot ◽  
J.G. Taylor

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
John Ellis ◽  
Jason L. Evans ◽  
Natsumi Nagata ◽  
Dimitri V. Nanopoulos ◽  
Keith A. Olive

AbstractWe consider proton decay and $$g_\mu - 2$$ g μ - 2 in flipped SU(5) GUT models. We first study scenarios in which the soft supersymmetry-breaking parameters are constrained to be universal at some high scale $$M_{in}$$ M in above the standard GUT scale where the QCD and electroweak SU(2) couplings unify. In this case the proton lifetime is typically $$ > rsim 10^{36}$$ ≳ 10 36  years, too long to be detected in the foreseeable future, and the supersymmetric contribution to $$g_\mu - 2$$ g μ - 2 is too small to contribute significantly to resolving the discrepancy between the experimental measurement and data-driven calculations within the Standard Model. However, we identify a region of the constrained flipped SU(5) parameter space with large couplings between the 10- and 5-dimensional GUT Higgs representations where $$p \rightarrow e^+ \pi ^0$$ p → e + π 0 decay may be detectable in the Hyper-Kamiokande experiment now under construction, though the contribution to $$g_\mu -2$$ g μ - 2 is still small. A substantial contribution to $$g_\mu - 2$$ g μ - 2 is possible, however, if the universality constraints on the soft supersymmetry-breaking masses are relaxed. We find a ‘quadrifecta’ region where observable proton decay co-exists with a (partial) supersymmetric resolution of the $$g_\mu - 2$$ g μ - 2 discrepancy and acceptable values of $$m_h$$ m h and the relic LSP density.


2007 ◽  
Vol 648 (5-6) ◽  
pp. 365-373 ◽  
Author(s):  
Borut Bajc ◽  
Goran Senjanović

Sign in / Sign up

Export Citation Format

Share Document