scholarly journals Low-energy probes of no-scale SU(5) super-GUTs

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
John Ellis ◽  
Jason L. Evans ◽  
Natsumi Nagata ◽  
Keith A. Olive ◽  
L. Velasco-Sevilla

AbstractWe explore the possible values of the $$\mu \rightarrow e \gamma $$ μ → e γ branching ratio, $$\text {BR}(\mu \rightarrow e\gamma )$$ BR ( μ → e γ ) , and the electron dipole moment (eEDM), $$d_e$$ d e , in no-scale SU(5) super-GUT models with the boundary conditions that soft supersymmetry-breaking matter scalar masses vanish at some high input scale, $$M_\mathrm{in}$$ M in , above the GUT scale, $$M_{\mathrm{GUT}}$$ M GUT . We take into account the constraints from the cosmological cold dark matter density, $$\Omega _{CDM} h^2$$ Ω CDM h 2 , the Higgs mass, $$M_h$$ M h , and the experimental lower limit on the lifetime for $$p \rightarrow K^+ \bar{\nu }$$ p → K + ν ¯ , the dominant proton decay mode in these super-GUT models. Reconciling this limit with $$\Omega _{CDM} h^2$$ Ω CDM h 2 and $$M_h$$ M h requires the Higgs field responsible for the charge-2/3 quark masses to be twisted, and possibly also that responsible for the charge-1/3 and charged-lepton masses, with model-dependent soft supersymmetry-breaking masses. We consider six possible models for the super-GUT initial conditions, and two possible choices for quark flavor mixing, contrasting their predictions for proton decay with versions of the models in which mixing effects are neglected. We find that $$\tau \left( p\rightarrow K^+ \bar{\nu }\right) $$ τ p → K + ν ¯ may be accessible to the upcoming Hyper-Kamiokande experiment, whereas all the models predict $$\text {BR}(\mu \rightarrow e\gamma )$$ BR ( μ → e γ ) and $$d_e$$ d e below the current and prospective future experimental sensitivities or both flavor choices, when the dark matter density, Higgs mass and current proton decay constraints are taken into account. However, there are limited regions with one of the flavor choices in two of the models where $$\mu \rightarrow e$$ μ → e conversion on a heavy nucleus may be observable in the future. Our results indicate that there is no supersymmetric flavor problem in the class of no-scale models we consider.

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
John Ellis ◽  
Jason L. Evans ◽  
Natsumi Nagata ◽  
Keith A. Olive

AbstractWe explore a missing-partner model based on the minimal SU(5) gauge group with $$\mathbf{75} $$ 75 , $$\mathbf{50} $$ 50 and $$\overline{\mathbf{50 }}$$ 50 ¯ Higgs representations, assuming a super-GUT CMSSM scenario in which soft supersymmetry-breaking parameters are universal at some high scale $$M_{\mathrm{in}}$$ M in above the GUT scale $$M_{\mathrm{GUT}}$$ M GUT . We identify regions of parameter space that are consistent with the cosmological dark matter density, the measured Higgs mass and the experimental lower limit on $$\tau (p \rightarrow K^+ \nu )$$ τ ( p → K + ν ) . These constraints can be satisfied simultaneously along stop coannihilation strips in the super-GUT CMSSM with $$\tan \beta \sim $$ tan β ∼ 3.5–5 where the input gaugino mass $$m_{1/2} \sim $$ m 1 / 2 ∼ 15–25 TeV, corresponding after strong renormalization by the large GUT Higgs representations between $$M_{\mathrm{in}}$$ M in and $$M_{\mathrm{GUT}}$$ M GUT to $$m_{\mathrm{LSP}}, m_{{\tilde{t}}_1} \sim $$ m LSP , m t ~ 1 ∼ 2.5–5 TeV and $$m_{{\tilde{g}}} \sim $$ m g ~ ∼ 13–20 TeV, with the light-flavor squarks significantly heavier. We find that $$\tau (p \rightarrow K^+ \nu ) \lesssim 3 \times 10^{34}$$ τ ( p → K + ν ) ≲ 3 × 10 34  years throughout the allowed range of parameter space, within the range of the next generation of searches with the JUNO, DUNE and Hyper-Kamiokande experiments.


Author(s):  
A Balaguera-Antolínez ◽  
Francisco-Shu Kitaura ◽  
M Pellejero-Ibáñez ◽  
Martha Lippich ◽  
Cheng Zhao ◽  
...  

Abstract In this paper we demonstrate that the information encoded in one single (sufficiently large) N-body simulation can be used to reproduce arbitrary numbers of halo catalogues, using approximated realisations of dark matter density fields with different initial conditions. To this end we use as a reference one realisation (from an ensemble of 300) of the Minerva N-body simulations and the recently published Bias Assignment Method to extract the local and non-local bias linking the halo to the dark matter distribution. We use an approximate (and fast) gravity solver to generate 300 dark matter density fields from the down-sampled initial conditions of the reference simulation and sample each of these fields using the halo-bias and a kernel, both calibrated from the arbitrarily chosen realisation of the reference simulation. We show that the power spectrum, its variance and the three-point statistics are reproduced within $\sim 2\%$ (up to k ∼ 1.0 h Mpc−1), $\sim 5-10\%$ and $\sim 10\%$, respectively. Using a model for the real space power spectrum (with three free bias parameters), we show that the covariance matrices obtained from our procedure lead to parameter uncertainties that are compatible within $\sim 10\%$ with respect to those derived from the reference covariance matrix, and motivate approaches that can help to reduce these differences to $\sim 1\%$. Our method has the potential to learn from one simulation with moderate volumes and high-mass resolution and extrapolate the information of the bias and the kernel to larger volumes, making it ideal for the construction of mock catalogues for present and forthcoming observational campaigns such as Euclid or DESI.


2020 ◽  
Vol 494 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Tom Charnock ◽  
Guilhem Lavaux ◽  
Benjamin D Wandelt ◽  
Supranta Sarma Boruah ◽  
Jens Jasche ◽  
...  

ABSTRACT An ambitious goal in cosmology is to forward model the observed distribution of galaxies in the nearby Universe today from the initial conditions of large-scale structures. For practical reasons, the spatial resolution at which this can be done is necessarily limited. Consequently, one needs a mapping between the density of dark matter averaged over ∼Mpc scales and the distribution of dark matter haloes (used as a proxy for galaxies) in the same region. Here, we demonstrate a method for determining the halo mass distribution function by learning the tracer bias between density fields and halo catalogues using a neural bias model. The method is based on the Bayesian analysis of simple, physically motivated, neural network-like architectures, which we denote as neural physical engines, and neural density estimation. As a result, we are able to sample the initial phases of the dark matter density field while inferring the parameters describing the halo mass distribution function, providing a fully Bayesian interpretation of both the initial dark matter density distribution and the neural bias model. We successfully run an upgraded borg (Bayesian Origin Reconstruction from Galaxies) inference using our new likelihood and neural bias model with halo catalogues derived from full N-body simulations. In preliminary results, we notice there could potentially be orders of magnitude improvement in modelling compared to classical biasing techniques.


Author(s):  
Michael Kachelriess

The Boltzmann equations, which describe processes as diverse as the evolution of the dark matter density, big bang nucleosynthesis or recombination, are derived. The Gamov criterion states that processes freeze-out when their rate becomes smaller than the Hubble rate. It is demonstrated that the mass of any thermal relic is bounded by ≲ 20TeV, while the abundance of a cold dark matter particle with 〈σ‎v〉 ≃ 3 × 10−26 cm3/s corresponds to the observed one, Ω‎CDM = 0.2. Big bang nucleosynthesis, which successfully explains the abundance of light elements like D and 4He, is discussed.


2013 ◽  
Vol 719 (1-3) ◽  
pp. 143-147 ◽  
Author(s):  
Senarath de Alwis ◽  
Kevin Givens

2004 ◽  
Vol 355 (4) ◽  
pp. 1119-1124 ◽  
Author(s):  
C. Nipoti ◽  
T. Treu ◽  
L. Ciotti ◽  
M. Stiavelli

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anthony Ashmore ◽  
Sebastian Dumitru ◽  
Burt A. Ovrut

Abstract The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the B − L MSSM theory is reviewed, including a discussion of the “bundle” constraints that both the observable sector SU(4) vector bundle and the hidden sector bundle induced from a single line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kähler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent F-terms due to a gaugino superpotential — which spontaneously break N = 1 supersymmetry in this sector — is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli-dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kähler moduli space that satisfy all “bundle” constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.


2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


Sign in / Sign up

Export Citation Format

Share Document