Charge asymmetry measurement in e+e−→μ+μ− and τ+τ− reactions at and 55 GeV

1988 ◽  
Vol 208 (2) ◽  
pp. 319-323 ◽  
Author(s):  
I. Adachi ◽  
H. Aihara ◽  
H.B. Dijkstra ◽  
R. Enomoto ◽  
H. Fujii ◽  
...  
1972 ◽  
Vol 102 (1) ◽  
pp. 45-50 ◽  
Author(s):  
R.M. Graven ◽  
J.H. Brewer ◽  
R.J. Budnitz ◽  
R.L. McCarthy ◽  
D.H. Miller

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1192
Author(s):  
Ulrich David Jentschura

We propose a method by which one could use modified antimatter gravity experiments in order to perform a high-precision test of antimatter charge neutrality. The proposal is based on the application of a strong, external, vertically oriented electric field during an antimatter free-fall gravity experiment in the gravitational field of the Earth. The proposed experimental setup has the potential to drastically improve the limits on the charge-asymmetry parameter ϵ¯q of antimatter. On the theoretical side, we analyze possibilities to describe a putative charge-asymmetry of matter and antimatter, proportional to the parameters ϵq and ϵ¯q, by Lagrangian methods. We found that such an asymmetry could be described by four-dimensional Lorentz-invariant operators that break CPT without destroying the locality of the field theory. The mechanism involves an interaction Lagrangian with field operators decomposed into particle or antiparticle field contributions. Our Lagrangian is otherwise Lorentz, as well as PT invariant. Constraints to be derived on the parameter ϵ¯q do not depend on the assumed theoretical model.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


2016 ◽  
Vol 93 (3) ◽  
Author(s):  
V. Khachatryan ◽  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
E. Asilar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document