Interacting D=10 supersymmetric Yang-Mills Theory can be conjugated into a free field theory

1989 ◽  
Vol 231 (1-2) ◽  
pp. 75-79
Author(s):  
Esko Keski-Vakkuri ◽  
Antti J Niemi
Keyword(s):  
1997 ◽  
Vol 12 (11) ◽  
pp. 1959-1965 ◽  
Author(s):  
M. Alimohammadi ◽  
M. Khorrami

Using the simple path integral method we calculate the n-point functions of field strength of Yang–Mills theories on arbitrary two-dimensional Riemann surfaces. In U(1) case we show that the correlators consist of two parts, a free and an x-independent part. In the case of non-Abelian semisimple compact gauge groups we find the nongauge-invariant correlators in Schwinger–Fock gauge and show that it is also divided to a free and an almost x-independent part. We also find the gauge-invariant Green functions and show that they correspond to a free field theory.


1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Hongliang Jiang

Abstract Celestial amplitude is a new reformulation of momentum space scattering amplitudes and offers a promising way for flat holography. In this paper, we study the celestial amplitudes in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills (SYM) theory aiming at understanding the role of superconformal symmetry in celestial holography. We first construct the superconformal generators acting on the celestial superfield which assembles all the on-shell fields in the multiplet together in terms of celestial variables and Grassmann parameters. These generators satisfy the superconformal algebra of $$ \mathcal{N} $$ N = 4 SYM theory. We also compute the three-point and four-point celestial super-amplitudes explicitly. They can be identified as the conformal correlation functions of the celestial superfields living at the celestial sphere. We further study the soft and collinear limits which give rise to the super-Ward identity and super-OPE on the celestial sphere, respectively. Our results initiate a new perspective of understanding the well-studied $$ \mathcal{N} $$ N = 4 SYM amplitudes via 2D celestial conformal field theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We consider a family of $$ \mathcal{N} $$ N = 2 superconformal field theories in four dimensions, defined as ℤq orbifolds of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $$ \mathcal{N} $$ N = 1 superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of N , exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $$ \mathcal{N} $$ N = 4 only at high orders in perturbation theory.


2009 ◽  
Vol 24 (07) ◽  
pp. 1309-1331 ◽  
Author(s):  
ANTON M. ZEITLIN

We show explicitly how Batalin–Vilkovisky Yang–Mills action emerges as a homotopy generalization of Chern–Simons theory from the algebraic constructions arising from string field theory.


1997 ◽  
Vol 12 (19) ◽  
pp. 3307-3334 ◽  
Author(s):  
C. Arvanitis ◽  
F. Geniet ◽  
M. Iacomi ◽  
J.-L. Kneur ◽  
A. Neveu

We show how to perform systematically improvable variational calculations in the O(2N) Gross–Neveu model for generic N, in such a way that all infinities usually plaguing such calculations are accounted for in a way compatible with the perturbative renormalization group. The final point is a general framework for the calculation of nonperturbative quantities like condensates, masses, etc., in an asymptotically free field theory. For the Gross–Neveu model, the numerical results obtained from a "two-loop" variational calculation are in a very good agreement with exact quantities down to low values of N.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Marco Frasca ◽  
Anish Ghoshal

Abstract We investigate the non-perturbative regimes in the class of non-Abelian theories that have been proposed as an ultraviolet completion of 4-D Quantum Field Theory (QFT) generalizing the kinetic energy operators to an infinite series of higher-order derivatives inspired by string field theory. We prove that, at the non-perturbative level, the physical spectrum of the theory is actually corrected by the “infinite number of derivatives” present in the action. We derive a set of Dyson-Schwinger equations in differential form, for correlation functions till two-points, the solution for which are known in the local theory. We obtain that just like in the local theory, the non-local counterpart displays a mass gap, depending also on the mass scale of non-locality, and show that it is damped in the deep UV asymptotically. We point out some possible implications of our result in particle physics and cosmology and discuss aspects of non-local QCD-like scenarios.


Sign in / Sign up

Export Citation Format

Share Document