Small angle proton-proton correlations in collisions of high energy light ions with carbon and gold nuclei

1990 ◽  
Vol 243 (4) ◽  
pp. 341-345 ◽  
Author(s):  
V.A. Budilov ◽  
A. Filipkowski ◽  
A. Golembiewski ◽  
V.I. Ilyuschenko ◽  
A. Korejwo ◽  
...  
2020 ◽  
Vol 91 (12) ◽  
pp. 123501
Author(s):  
M. Šmíd ◽  
C. Baehtz ◽  
A. Pelka ◽  
A. Laso García ◽  
S. Göde ◽  
...  

1978 ◽  
Vol 141 (1-2) ◽  
pp. 1-28 ◽  
Author(s):  
L. Baksay ◽  
L. Baum ◽  
A. Böhm ◽  
A. Derevshikov ◽  
G. de Zorzi ◽  
...  

2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


Sign in / Sign up

Export Citation Format

Share Document