Mirror to measure small angle x-ray scattering signal in high energy density experiments

2020 ◽  
Vol 91 (12) ◽  
pp. 123501
Author(s):  
M. Šmíd ◽  
C. Baehtz ◽  
A. Pelka ◽  
A. Laso García ◽  
S. Göde ◽  
...  
2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


2017 ◽  
Vol 19 (19) ◽  
pp. 12064-12074 ◽  
Author(s):  
Emilia I. Wisotzki ◽  
Paolo Tempesti ◽  
Emiliano Fratini ◽  
Stefan G. Mayr

Small-angle X-ray scattering revealed ranging structural differences in physically entangled and irradiation-crosslinked gelatin hydrogels.


2010 ◽  
Vol 43 (6) ◽  
pp. 1479-1487 ◽  
Author(s):  
Michael Sztucki ◽  
Emanuela Di Cola ◽  
Theyencheri Narayanan

An optimized instrument for anomalous small-angle X-ray scattering from charged soft matter is described. The experimental setup takes special care for single-photon detection sensitivity, high energy resolution of the monochromator,in situcalibration of intensity and energy, and the avoidance of radiation damage. Measured intensities are normalized to an absolute scale online, which can be further decomposed to resonant and non-resonant contributions. The performance of the instrument is demonstrated by an example involving cationic surfactant micelles with bromide counter-ions. The counter-ion profile around the micelle is deduced from the analysis of anomalous scattering near theK-absorption edge of bromine. Two different approaches yield similar results for the radial profile of the counter-ions, showing strong condensation of the counter-ions on the micellar surface, in agreement with the inference from electrochemical methods.


2008 ◽  
Vol 41 (1) ◽  
pp. 185-190 ◽  
Author(s):  
Matthias Stockmeier ◽  
Matthias Petermair ◽  
Andreas Magerl

A novel method for focusing X-rays in two dimensions by thermal-gradient crystals in symmetrical Laue geometry is described. A 225 kV stationary tungsten tube delivers an X-ray beam with a source diameter of about 1.0 mm (full width at half-maximum). The focal point at the detector at a distance up to 16 m from the source is of the same size. The beam at the focusing crystals at half the distance between the source and the detector has typical dimensions of 30 × 30 mm. The intensity of the focal point can be increased by more than 200 times by applying a thermal gradient of about 2.2 K mm−1on the focusing crystals. The described method and apparatus are designed for small-angle X-ray scattering at high photon energies up to 60 keV, where the high penetration power allows experiments on strongly absorbing materials in transmission mode. Particle sizes up to 3000 Å can be detected. First measurements on nanocrystalline tungsten carbide and Teflon yield radii of gyration of 540 Å and 815 Å, respectively.


2012 ◽  
Vol 45 (6) ◽  
pp. 1318-1320 ◽  
Author(s):  
Jan Ilavsky ◽  
Andrew J. Allen ◽  
Lyle E. Levine ◽  
Fan Zhang ◽  
Pete R. Jemian ◽  
...  

This paper reports recent tests performed on the Bonse–Hart-type ultra-small-angle X-ray scattering (USAXS) instrument at the Advanced Photon Source with higher-order reflection optics – Si(440) instead of Si(220) – and with X-ray energies greater than 20 keV. The results obtained demonstrate the feasibility of high-energy operation with narrower crystal reflectivity curves, which provides access to a scatteringqrange from ∼2 × 10−5to 1.8 Å−1and up to 12 decades in the associated sample-dependent scattering intensity range. The corresponding size range of the scattering features spans about five decades – from less than 10 Å to ∼15 µm. These tests have indicated that mechanical upgrades are required to ensure the alignment capability and operational stability of this instrument for general user operations because of the tighter angular-resolution constraints of the higher-order crystal optics.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Durgesh K. Rai ◽  
Richard E. Gillilan ◽  
Qingqiu Huang ◽  
Robert Miller ◽  
Edmund Ting ◽  
...  

Pressure is a fundamental thermodynamic parameter controlling the behavior of biological macromolecules. Pressure affects protein denaturation, kinetic parameters of enzymes, ligand binding, membrane permeability, ion transduction, expression of genetic information, viral infectivity, protein association and aggregation, and chemical processes. In many cases pressure alters the molecular shape. Small-angle X-ray scattering (SAXS) is a primary method to determine the shape and size of macromolecules. However, relatively few SAXS cells described in the literature are suitable for use at high pressures and with biological materials. Described here is a novel high-pressure SAXS sample cell that is suitable for general facility use by prioritization of ease of sample loading, temperature control, mechanical stability and X-ray background minimization. Cell operation at 14 keV is described, providing a q range of 0.01 < q < 0.7 Å−1, pressures of 0–400 MPa and an achievable temperature range of 0–80°C. The high-pressure SAXS cell has recently been commissioned on the ID7A beamline at the Cornell High Energy Synchrotron Source and is available to users on a peer-reviewed proposal basis.


2012 ◽  
Vol 45 (2) ◽  
pp. 213-223 ◽  
Author(s):  
S. S. Nielsen ◽  
M. Møller ◽  
R. E. Gillilan

With the rise in popularity of biological small-angle X-ray scattering (BioSAXS) measurements, synchrotron beamlines are confronted with an ever-increasing number of samples from a wide range of solution conditions. To meet these demands, an increasing number of beamlines worldwide have begun to provide automated liquid-handling systems for sample loading. This article presents an automated sample-loading system for BioSAXS beamlines, which combines single-channel disposable-tip pipetting with a vacuum-enclosed temperature-controlled capillary flow cell. The design incorporates an easily changeable capillary to reduce the incidence of X-ray window fouling and cross contamination. Both the robot-control and the data-processing systems are written in Python. The data-processing code,RAW, has been enhanced with several new features to form a user-friendly BioSAXS pipeline for the robot. The flow cell also supports efficient manual loading and sample recovery. An effective rinse protocol for the sample cell is developed and tested. Fluid dynamics within the sample capillary reveals a vortex ring pattern of circulation that redistributes radiation-damaged material. Radiation damage is most severe in the boundary layer near the capillary surface. At typical flow speeds, capillaries below 2 mm in diameter are beginning to enter the Stokes (creeping flow) regime in which mixing due to oscillation is limited. Analysis within this regime shows that single-pass exposure and multiple-pass exposure of a sample plug are functionally the same with regard to exposed volume when plug motion reversal is slow. The robot was tested on three different beamlines at the Cornell High-Energy Synchrotron Source, with a variety of detectors and beam characteristics, and it has been used successfully in several published studies as well as in two introductory short courses on basic BioSAXS methods.


IUCrJ ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 431-438 ◽  
Author(s):  
Mika Pflüger ◽  
Victor Soltwisch ◽  
Jürgen Probst ◽  
Frank Scholze ◽  
Michael Krumrey

Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nanostructured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all lithographically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications,e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint.


Sign in / Sign up

Export Citation Format

Share Document