A fast mechanism for the acceleration of solar cosmic rays and solar energetic particles in solar flares

1993 ◽  
Vol 307 (1-2) ◽  
pp. 128-131 ◽  
Author(s):  
G. Fiorentini ◽  
S.S. Gershtein
2003 ◽  
Vol 21 (6) ◽  
pp. 1217-1228 ◽  
Author(s):  
R. B. McKibben ◽  
J. J. Connell ◽  
C. Lopate ◽  
M. Zhang ◽  
J. D. Anglin ◽  
...  

Abstract. In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum.  Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs) accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs). At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere.Key words. Interplanetary physics (cosmic rays) – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections)


2013 ◽  
Vol 3 ◽  
pp. A14 ◽  
Author(s):  
Peter I.Y. Velinov ◽  
Simeon Asenovski ◽  
Karel Kudela ◽  
Jan Lastovicka ◽  
Lachezar Mateev ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 292
Author(s):  
Donald V. Reames

Sixty years of study of energetic particle abundances have made a major contribution to our understanding of the physics of solar energetic particles (SEPs) or solar cosmic rays. An early surprise was the observation in small SEP events of huge enhancements in the isotope 3He from resonant wave–particle interactions, and the subsequent observation of accompanying enhancements of heavy ions, later found to increase 1000-fold as a steep power of the mass-to-charge ratio A/Q, right across the elements from H to Pb. These “impulsive” SEP events have been related to magnetic reconnection on open field lines in solar jets; similar processes occur on closed loops in flares, but those SEPs are trapped and dissipate their energy in heat and light. After early controversy, it was established that particles in the large “gradual” SEP events are accelerated at shock waves driven by wide, fast coronal mass ejections (CMEs) that expand broadly. On average, gradual SEP events give us a measure of element abundances in the solar corona, which differ from those in the photosphere as a classic function of the first ionization potential (FIP) of the elements, distinguishing ions and neutrals. Departures from the average in gradual SEPs are also power laws in A/Q, and fits of this dependence can determine Q values and thus estimate source plasma temperatures. Complications arise when shock waves reaccelerate residual ions from the impulsive events, but excess protons and the extent of abundance variations help to resolve these processes. Yet, specific questions about SEP abundances remain.


Author(s):  
Loukas Vlahos ◽  
Anastasios Anastasiadis ◽  
Athanasios Papaioannou ◽  
Athanasios Kouloumvakos ◽  
Heinz Isliker

Solar energetic particles are an integral part of the physical processes related with space weather. We present a review for the acceleration mechanisms related to the explosive phenomena (flares and/or coronal mass ejections, CMEs) inside the solar corona. For more than 40 years, the main two-dimensional cartoon representing our understanding of the explosive phenomena inside the solar corona remained almost unchanged. The acceleration mechanisms related to solar flares and CMEs also remained unchanged and were part of the same cartoon. In this review, we revise the standard cartoon and present evidence from recent global magnetohydrodynamic simulations that support the argument that explosive phenomena will lead to the spontaneous formation of current sheets in different parts of the erupting magnetic structure. The evolution of the large-scale current sheets and their fragmentation will lead to strong turbulence and turbulent reconnection during solar flares and turbulent shocks. In other words, the acceleration mechanism in flares and CME-driven shocks may be the same, and their difference will be the overall magnetic topology, the ambient plasma parameters, and the duration of the unstable driver. This article is part of the theme issue ‘Solar eruptions and their space weather impact’.


Icarus ◽  
2018 ◽  
Vol 300 ◽  
pp. 47-71 ◽  
Author(s):  
E. Roussos ◽  
C.M. Jackman ◽  
M.F. Thomsen ◽  
W.S. Kurth ◽  
S.V. Badman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document