scholarly journals Quantum corrections to black hole entropy in string theory

1995 ◽  
Vol 347 (3-4) ◽  
pp. 222-229 ◽  
Author(s):  
Atish Dabholkar
2006 ◽  
Vol 15 (10) ◽  
pp. 1561-1572 ◽  
Author(s):  
ATISH DABHOLKAR

In this talk I summarize some recent progress in string theory in understanding the entropy of a class of black holes including corrections to the Bekenstein–Hawking formula. The quantum corrected entropy is in precise numerical agreement with the logarithm of the number of microstates once quantum corrections are correctly taken into account.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 858
Author(s):  
Dongshan He ◽  
Qingyu Cai

In this paper, we present a derivation of the black hole area entropy with the relationship between entropy and information. The curved space of a black hole allows objects to be imaged in the same way as camera lenses. The maximal information that a black hole can gain is limited by both the Compton wavelength of the object and the diameter of the black hole. When an object falls into a black hole, its information disappears due to the no-hair theorem, and the entropy of the black hole increases correspondingly. The area entropy of a black hole can thus be obtained, which indicates that the Bekenstein–Hawking entropy is information entropy rather than thermodynamic entropy. The quantum corrections of black hole entropy are also obtained according to the limit of Compton wavelength of the captured particles, which makes the mass of a black hole naturally quantized. Our work provides an information-theoretic perspective for understanding the nature of black hole entropy.


1995 ◽  
Vol 10 (17) ◽  
pp. 1187-1193 ◽  
Author(s):  
E. ELIZALDE ◽  
S.D. ODINTSOV

We calculate the quantum corrections to the entropy of a very large black hole, coming from the theory of a D-dimensional, noncritical bosonic string. We show that for D>2, as a result of modular invariance the entropy is uv finite though it diverges in the ir (while for D=2 the entropy contains both uv and ir divergences). The issue of modular invariance in field theory, in connection with black hole entropy, is also investigated.


10.33540/165 ◽  
2020 ◽  
Author(s):  
◽  
Herbert het Lam

2013 ◽  
Vol 91 (1) ◽  
pp. 75-80
Author(s):  
Alireza Sepehri ◽  
Somayyeh Shoorvazi ◽  
Mohammad Ebrahim Zomorrodian

The correspondence principle offers a unique opportunity to test the Horowitz and Maldacena mechanism at the correspondence point “the centre of mass energies around (Ms/(gs)2)”. First by using the Horowitz and Maldacena proposal, the black hole final state for closed strings is studied and the entropy of these states is calculated. Then, to consider the closed string states, a copy of the original Hilbert space is constructed with a set of creation–annihilation operators that have the same commutation properties as the original ones. The total Hilbert space is the tensor product of the two spaces Hright ⊗ Hleft, where in this case Hleft/right denote the physical quantum state space of the closed string. It is shown that closed string states can be represented by a maximally entangled two-mode squeezed state of the left and right spaces of closed string. Also, the entropy for these string states is calculated. It is found that black hole entropy matches the closed string entropy at transition point. This means that our result is consistent with correspondence principle and thus HM mechanism in string theory works. Consequently the unitarity of the black hole in string theory can be reconciled. However Gottesman and Preskill point out that, in this scenario, departures from unitarity can arise due to interactions between the collapsing body and the infalling Hawking radiation inside the event horizon and information can be lost. By extending the Gottesman and Preskill method to string theory, the amount of information transformation from the matter to the state of outgoing Hagedorn radiation for closed strings is obtained. It is observed that information is lost for closed strings.


Author(s):  
Jeffrey A. Harvey

Ramanujan influenced many areas of mathematics, but his work on q -series, on the growth of coefficients of modular forms and on mock modular forms stands out for its depth and breadth of applications. I will give a brief overview of how this part of Ramanujan's work has influenced physics with an emphasis on applications to string theory, counting of black hole states and moonshine. This paper contains the material from my presentation at the meeting celebrating the centenary of Ramanujan's election as FRS and adds some additional material on black hole entropy and the AdS/CFT correspondence. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.


2019 ◽  
Vol 34 (32) ◽  
pp. 1950216
Author(s):  
Tairan Liang ◽  
Wei Xu

It has been found recently that the entropy relations of horizons have the universality of black hole mass-independence for many black holes. These universal entropy relations have some geometric and CFT understanding, which may provide further insight into the quantum physics of black holes. In this paper, we present the leading order of black hole entropy sum relations under the quantum corrections. It is found that the modified entropy sum becomes mass-dependent for some black holes in asymptotical (A)dS and flat space–times. We also give an example that the modified entropy sum of regular Bardeen AdS black holes is mass-independent, which may be quantized in the form of the electric charge and the cosmological constant.


1999 ◽  
Vol 14 (04) ◽  
pp. 239-246 ◽  
Author(s):  
YOU-GEN SHEN ◽  
DA-MING CHEN

By using 't Hooft's brick wall model, the corrections for a massless quantum scalar field to the black hole entropy are studied in rotating U (1) ⊗ U (1)-dilaton black hole space–time. The free energy and entropy for this case are calculated, and in Hartle–Hawking states, the derived quantum entropy is composed of the geometric part and the non-geometric part which is logrithmically divergent. It turns out that the logrithmic part is related to the characteristic quantities of a black hole.


Sign in / Sign up

Export Citation Format

Share Document