On the violation of Lorentz-invariance in deterministic hidden-variable interpretations of quantum theory

1992 ◽  
Vol 168 (3) ◽  
pp. 169-173 ◽  
Author(s):  
Lucien Hardy ◽  
Euan J. Squires
Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1318 ◽  
Author(s):  
Rui Xu

General Relativity predicts two modes for plane gravitational waves. When a tiny violation of Lorentz invariance occurs, the two gravitational wave modes are modified. We use perturbation theory to study the detailed form of the modifications to the two gravitational wave modes from the minimal Lorentz-violation coupling. The perturbation solution for the metric fluctuation up to the first order in Lorentz violation is discussed. Then, we investigate the motions of test particles under the influence of the plane gravitational waves with Lorentz violation. First-order deviations from the usual motions are found.


1989 ◽  
Vol 226 (3-4) ◽  
pp. 237-243 ◽  
Author(s):  
S. James Gates ◽  
Parthasarathi Majumdar ◽  
B. Radak ◽  
S. Vashakidze

2012 ◽  
Vol 108 (26) ◽  
Author(s):  
V. M. Abazov ◽  
B. Abbott ◽  
B. S. Acharya ◽  
M. Adams ◽  
T. Adams ◽  
...  

2005 ◽  
Vol 14 (12) ◽  
pp. 2069-2094 ◽  
Author(s):  
DANIEL SUDARSKY

The idea that quantum gravity manifestations are associated with a violation of Lorentz invariance is very strongly bounded and faces serious theoretical challenges. Other related ideas seem to be drowning in interpretational quagmires. This leads us to consider alternative lines of thought for such a phenomenological search. We discuss the underlying viewpoints and briefly mention their possible connections with other current theoretical ideas.


2016 ◽  
Vol 31 (09) ◽  
pp. 1650041 ◽  
Author(s):  
Charles Schwartz

We construct momentum space expansions for the wave functions that solve the Klein–Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between space–time points separated by a timelike interval. Calculating the conserved charge and four-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Celio A. Moura ◽  
Fernando Rossi-Torres

Neutrinos are a powerful tool for searching physics beyond the standard model of elementary particles. In this review, we present the status of the research on charge-parity-time (CPT) symmetry and Lorentz invariance violations using neutrinos emitted from the collapse of stars such as supernovae and other astrophysical environments, such as gamma-ray bursts. Particularly, supernova neutrino fluxes may provide precious information because all neutrino and antineutrino flavors are emitted during a burst of tens of seconds. Models of quantum gravity may allow the violation of Lorentz invariance and possibly of CPT symmetry. Violation of Lorentz invariance may cause a modification of the dispersion relation and, therefore, in the neutrino group velocity as well in the neutrino wave packet. These changes can affect the arrival time signal registered in astrophysical neutrino detectors. Direction or time-dependent oscillation probabilities and anisotropy of the neutrino velocity are manifestations of the same kind of new physics. CPT violation, on the other hand, may be responsible for different oscillation patterns for neutrino and antineutrino and unconventional energy dependency of the oscillation phase or of the mixing angles. Future perspectives for possible CPT and Lorentz violating systems are also presented.


2021 ◽  
Author(s):  
Tom Purves ◽  
Anthony Short

Abstract Within quantum theory, we can create superpositions of different causal orders of events, and observe interference between them. This raises the question of whether quantum theory can produce results that would be impossible to replicate with any classical causal model, thereby violating a causal inequality. This would be a temporal analogue of Bell inequality violation, which proves that no local hidden variable model can replicate quantum results. However, unlike the case of non-locality, we show that quantum experiments can be simulated by a classical causal model, and therefore cannot violate a causal inequality.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 1 ◽  
Author(s):  
Richard David Gill

Pearle (1970) gave an example of a local hidden variables model which exactly reproduced the singlet correlations of quantum theory, through the device of data-rejection: particles can fail to be detected in a way which depends on the hidden variables carried by the particles and on the measurement settings. If the experimenter computes correlations between measurement outcomes of particle pairs for which both particles are detected, he or she is actually looking at a subsample of particle pairs, determined by interaction involving both measurement settings and the hidden variables carried in the particles. We correct a mistake in Pearle’s formulas (a normalization error) and more importantly show that the model is simpler than first appears. We illustrate with visualizations of the model and with a small simulation experiment, with code in the statistical programming language R included in the paper. Open problems are discussed.


Sign in / Sign up

Export Citation Format

Share Document