A simple empirical model describing the steady state shear viscosity and its use in prediction of the first normal stress function in shear flow

1994 ◽  
Vol 51 (2) ◽  
pp. 179-194 ◽  
Author(s):  
Yongsok Seo
2020 ◽  
Vol 59 (10) ◽  
pp. 755-763 ◽  
Author(s):  
Leslie Poh ◽  
Esmaeil Narimissa ◽  
Manfred H. Wagner

Abstract The data set of steady and transient shear data reported by Santangelo and Roland Journal of Rheology 45: 583–594, (2001) in the nonlinear range of shear rates of an unentangled polystyrene melt PS13K with a molar mass of 13.7 kDa is analysed by using the single integral constitutive equation approach developed by Narimissa and Wagner Journal of Rheology 64:129–140, (2020) for elongational and shear flow of Rouse melts. We compare model predictions with the steady-state, stress growth, and stress relaxation data after start-up shear flows. In characterising the linear-viscoelastic relaxation behaviour, we consider that in the vicinity of the glass transition temperature, Rouse modes and glassy modes are inseparable, and we model the terminal regime of PS13K by effective Rouse modes. Excellent agreement is achieved between model predictions and shear viscosity data, and good agreement with first normal stress coefficient data. In particular, the shear viscosity data of PS13K as well as of two polystyrene melts with M = 10.5 kDa and M = 9.8 kDa investigated by Stratton Macromolecules 5 (3): 304–310, (1972) agree quantitatively with the universal mastercurve predicted by Narimissa and Wagner for unentangled melts, and approach a scaling of Wi−1/2at sufficiently high Weissenberg numbers Wi. Some deviations between model predictions and data are seen for stress growth and stress relaxation of shear stress and first normal stress difference, which may be attributed to limitations of the experimental data, and may also indicate limitations of the model due to the complex interactions of Rouse modes and glassy modes in the vicinity of the glass transition temperature. Graphical abstract


1999 ◽  
Vol 17 (No. 1) ◽  
pp. 23-30 ◽  
Author(s):  
P. Novotna ◽  
M. Houska ◽  
V. Sopr ◽  
H. Valentova ◽  
P. Stern

The shear flow rheological properties of sugar solutions (70% w/w concentration) modified by different cellulose derivatives have been measured. Thickeners  were expected to cause the viscoelastic behaviour of the resulting sol ution. Therefore, the elastic rheological parameters were measured by oscillatory shear technique (phase angle, elastic modulus) and also the first normal stress difference N<sub>1</sub>. The increase of thickener concen tration caused a moderate increase of non-Newtonian behaviour in the shear flow. The sensory viscosity (ra nged between 0 and 100%) was evaluated by five different methods - as an effort for stirring with teaspoon, time for flowing down the spoon, slurping from spoon, compression between tongue and palate and swallowing. The influence of shear viscosity and first normal difference on sensory viscosity was tested. Correlation procedu re between change of sensory viscosity .tlSE and change of shear viscosity .tlJ.Iz showed that only for swallowing there is a statistically evident de­pendence. The correlation between change of sensory viscosity t.SE and first normal stress difference N<sub>1</sub> is not statistically   evident. For all the methods of sensory evaluation the dependence between these parameters is only weak and indirect (with increasing normal stress difference the sensory viscosity is decreasing).


2009 ◽  
Vol 626 ◽  
pp. 367-393 ◽  
Author(s):  
STEFAN MÄHLMANN ◽  
DEMETRIOS T. PAPAGEORGIOU

The effect of an electric field on a periodic array of two-dimensional liquid drops suspended in simple shear flow is studied numerically. The shear is produced by moving the parallel walls of the channel containing the fluids at equal speeds but in opposite directions and an electric field is generated by imposing a constant voltage difference across the channel walls. The level set method is adapted to electrohydrodynamics problems that include a background flow in order to compute the effects of permittivity and conductivity differences between the two phases on the dynamics and drop configurations. The electric field introduces additional interfacial stresses at the drop interface and we perform extensive computations to assess the combined effects of electric fields, surface tension and inertia. Our computations for perfect dielectric systems indicate that the electric field increases the drop deformation to generate elongated drops at steady state, and at the same time alters the drop orientation by increasing alignment with the vertical, which is the direction of the underlying electric field. These phenomena are observed for a range of values of Reynolds and capillary numbers. Computations using the leaky dielectric model also indicate that for certain combinations of electric properties the drop can undergo enhanced alignment with the vertical or the horizontal, as compared to perfect dielectric systems. For cases of enhanced elongation and alignment with the vertical, the flow positions the droplets closer to the channel walls where they cause larger wall shear stresses. We also establish that a sufficiently strong electric field can be used to destabilize the flow in the sense that steady-state droplets that can exist in its absence for a set of physical parameters, become increasingly and indefinitely elongated until additional mechanisms can lead to rupture. It is suggested that electric fields can be used to enhance such phenomena.


Sign in / Sign up

Export Citation Format

Share Document